• Title/Summary/Keyword: Biomechanical forces

Search Result 96, Processing Time 0.019 seconds

Finite Element Stress Analysis of the Implant Fixture According to the Thread Configuration and the Loading Condition (임플란트 고정체의 나사산 형태와 하중조건에 따른 응력분석)

  • Ahn, Ouk-Ju;Jeong, Jai-Ok;Kim, Chang-Hyun;Kang, Dong Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.153-167
    • /
    • 2005
  • The purpose of this study was to compare the v-shape thread with the square shape thread of fixture in the view of stress distribution pattern using finite element stress analysis. The finite element model was designed with the parallel placement of two standard fixtures(4.0 mm diameter ${\times}$ 11.5 mm length) on the region of mandibular 1st and 2nd molars. Three dimensional finite element model was created with the components of the implant and surrounding bone. This study simulated loads of 200 N at the central fossa in a axial direction (load A), 200 N at the buccal offset load that is 2 mm apart from central fossa in a axial direction (load B), 200 N at the buccal offset load that was 4 mm apart from central fossa in a axial direction (load C). These forces of load A',B',C' were applied to a $15^{\circ}$ inward oblique direction at that same site with 200 N. Von Mises stress values were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study : 1. The highest stress concentration occurred at the cervical region of the implant fixture. 2. Von Mises stress value of off-site region was higher than that of central fossa region. 3. Square shape thread type showed more even stress distribution in the vertical and oblique force than V-shape thread type. 4. Stress distribution was the most effective in the case of buccal offset load (2, 4 mm distance from central fossa) in the square shape thread type. 5. V-shape thread type revealed higher von Mises stress value than square shape thread type in all environmental condition. The results from numerical analyses concluded that square shape thread type had the lower destructive stress and more stress distribution between the fixture and bone interface than V-shape thread type. Therefore, square shape thread type was regarded as optimal thread configuration in biomechanical concepts.

EFFECTS OF MAXILLARY PROTRACTION ON THE DISPLACEMENT OF THE MAXILLA (상악골 전방 견인이 상악골체의 변위에 미치는 영향)

  • Ko, Jeong-Seok;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.543-555
    • /
    • 1995
  • In the orthopedic therapy, the biomechanical analysis of the appliance is necessary to get a desirable orthopedic effect. The purpose of this study was to investigate the desirable direction and application position of the protraction force. The protraction force of 500g was applied to the first premolar or to the first molar. The direction of force application was paralell or $20^{\circ}$ downward to the occlusal plane respectively. The stress distribution and the displacement within the maxilla was analyzed by a 3-dimensional finite element method. The findings obtained were as follows 1. Protraction forces caused a counterclockwise rotation of the maxilla. 2. The degree of maxillary rotation was less when the force was applied $20^{\circ}$ downward direction to the occlusal plane than when applied to the parallel direction. 3. The degree of rotation of maxilla was greater when the parallel force was applied to the 1st premolar than when applied to the first molar, whereas it was greater when force is applied $20^{\circ}$ downward than at the first premolar. In conclusion, the $20^{\circ}$ downward protraction from the first premolar induced the least counterclockwise rotation of the maxilla and was thought as the desirable direction and application position of the protraction force.

  • PDF

Biomechanical Analysis of Lower Limb on Stance during Golf Swing (골프 스윙 시 스탠스에 따른 하지의 역학적 분석)

  • Yoon, Se-Jin;Sul, Jeong-Dug;Woo, Byung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.532-542
    • /
    • 2021
  • The purpose of this study was to investigate the body's strategy through kinematic variables of the lower extremities and ground reaction forces to maintain the club-head speed and ball accuracy despite the three stances during the golf swing. Ten male golfers who official handicap two were participate in the experiment. All subjects performed swing after maintaining the address posture according to stance conditions(square; SS, open: OS, closed: CS). Using a 3D motion analysis system and force plateform, the results were calculated with the 7-iron full swing each stance. In result, there was no difference in center of displacement, and left and right hip and knee joint angle displacement. Left ankle joint was largely plantar-flexed in OS, and right ankle joint was largely performed in CS from the address to the downswing. From address to take-back, right foot had a large left direction and the left foot had a right direction were greater in OS than in CS. Therefore, despite various stances, maintaining the same posture at impact is thought to have a positive effect on club head speed and ball direction.

An Experimental Study on the Biomechanical Effectiveness of Bone Cement-Augmented Pedicle Screw Fixation with Various Types of Fenestrations

  • Yoon, Sang Hoon;Lee, Sang Hyung;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.779-789
    • /
    • 2022
  • Objective : To analyze the effects of the number and shape of fenestrations on the mechanical strength of pedicle screws and the effects of bone cement augmentation (BCA) on the pull-out strength (POS) of screws used in conventional BCA. Methods : For the control group, a conventional screw was defined as C1, a screw with cannulated end-holes was defined as C2, a C2 screw with six pinholes was defined as C3, and the control group type was set. Among the experimental screws, T1 was designed using symmetrically placed thru-hole type fenestrations with an elliptical shape, while T2 was designed with half-moon (HM)-shaped asymmetrical fenestrations. T3 and T4 were designed with single HM-shaped fenestrations covering three pitches and five pitches, respectively. T5 and T6 were designed with 0.6-mm and 1-mm wider fenestrations than T3. BCA was performed by injecting 3 mL of commercial bone cement in the screw, and mechanical strength and POS tests were performed according to ASTM F1717 and ASTM F543 standards. Synthetic bone (model #1522-505) made of polyurethane foam was used as a model of osteoporotic bone, and radiographic examinations were performed using computed tomography and fluoroscopy. Results : In the fatigue test, at 75% ultimate load, fractures occurred 7781 and 9189 times; at 50%, they occurred 36122 and 82067 times; and at 25%, no fractures occurred. The mean ultimate load for each screw type was 219.1±52.39 N for T1, 234.74±15.9 N for T2, 220.70±59.23 N for T3, 216.45±32.4 N for T4, 181.55±54.78 N for T5, and 216.47±29.25 N for T6. In comparison with C1, T1, T2, T3, T4, and T6 showed significantly different ultimate load values (p<0.05). However, when the values for C2 and the fenestrated screws were evaluated with an unpaired t test, the ultimate load value of C2 significantly differed only from that of T2 (p=0.025). The ultimate load value of C3 differed significantly from those of T1 and T2 (C3 vs. T1 : p=0.048; C3 vs. T2 : p<0.001). Linear correlation analysis revealed a significant correlation between the fenestration area and the volume of bone cement (Pearson's correlation coefficient r=0.288, p=0.036). The bone cement volume and ultimate load significantly correlated with each other in linear correlation analysis (r=0.403, p=0.003). Conclusion : Fenestration yielded a superior ultimate load in comparison with standard BCA using a conventional screw. In T2 screws with asymmetrical two-way fenestrations showed the maximal increase in ultimate load. The fenestrated screws can be expected to show a stable position for the formation of the cement mass.

Biomechanical Comparative Analysis of Two Goal-kick Motion in Soccer (두 가지 축구 골킥 동작의 운동역학적 비교 분석)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2005
  • The purpose of this study is to reveal the effects of two different kicks, the drop kick and the punt kick, into the kicking motion, through the kinetic comparative analysis of the kicking motion, which is conducted when one kicks a soccer goal. To grasp kinetic changing factors, which is performed by individual's each body segment, I connected kicking motions, which were analyzed by a two dimension co-ordination, into the personal computer to concrete the digits of it and smoothed by 10Hz. Using the smoothed data, I found a needed kinematical data by inputting an analytical program into the computer. The result of comparative analysis of two kicking motions can be summarized as below. 1. There was not a big difference between the time of the loading phase and the time of the swing phase, which can affect the exact impact and the angle of balls aviation direction. 2. The two kicks were not affected the timing and the velocity of the kicking leg's segment. 3. In the goal kick motion, the maximum velocity timing of the kicking leg's lower segment showed the following orders: the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.018sec) in the drop kick, and the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.015sec) in the punt kick. It showed that whipping motion increases the velocity of the foot at the time of impact. 4. At the time of impact, there was not a significant difference in the supporting leg's knee and ankle. When one does the punt kick, the subject spreads out his hip joint more at the time of impact. 5. When the impact performed, kicking leg's every segment was similar. Because the height of the ball is higher in the punt kick than in the drop kick, the subject has to stretch the knees more when he kicks a ball, so there is a significant affect on the angle and the distance of the ball's flying. 6. When one performs the drop kick, the stride is 0.02m shorter than the punt kick, and the ratio of height of the drop kick is 0.05 smaller than the punt kick. This difference greatly affects the center of the ball, the supporting leg's location, and the location of the center of gravity with the center of the ball at the time of impact. 7. Right before the moment of the impact, the center of gravity was located from the center of the ball, the height of the drop kick was 0.67m ratio of height was 0.37, and the height of the punt kick was 0.65m ratio of height was 0.36. The drop kick was located more to the back 0.21m ratio of height was 0.12, the punt kick was located more to the back 0.28m ratio of height was 0.16. 8. There was not a significant difference in the absolute angle of incidence and the maximum distance, but the absolute velocity of incidence showed a significant difference. This difference is caused from that whether players have the time to perform of not; the drop kick is used when the players have time to perform, and punt kick is used when the players launch a shifting attack. 9. The surface reaction force of the supporting leg had some relation with the approaching angle. Vertical reaction force (Fz) showed some differences in the two movements(p<0.05). The maximum force of the right and left surface reaction force (Fx) didn't have much differences (p<0.05), but it showed the tendency that the maximum force occurs before the peak force of the front and back surface (Fy) occurs.

Physiological and Psychological analysis of musculoskeletal symptoms (근골격계질환에 대한 물리적/심리적요인에 대한 연구)

  • Donghyun Park;Sung Kyu Bae
    • Korean Journal of Culture and Social Issue
    • /
    • v.9 no.spc
    • /
    • pp.107-122
    • /
    • 2003
  • The object of this study is to evaluate the prevailing physical and psychosocial conditions regarding occupational low back injury. This study consists of two parts. In the first part of the study, analytic biomechanical model and NIOSH guidelines are applied to evaluate risk levels of low back injury for automobile assembly jobs. Total of 246 workers are analysed. There are 20 jobs having greater back compressive forces than 300kg at L5/S1. Also, there are 44 jobs over Action Limit with respect to 1981 NIOSH guidelines. The relationship between psychosocial factors and low back injury was examined in the second part of the study. A battery of questionnaires concerning the psychosocial stress based on PWI (Psychosocial Well-being Index) and musculoskeletal pain symptoms at low back was completed by 246 workers at the same plant. Results showed that 207 out 246 workers experienced the symptoms and 27 workers were diagnosed as patients. Two groups(low stressed, high stressed) based on PWI score had no significant relationships with both symptoms and results of diagnosis. The relationships between physical work load and psychosocial stress were also analysed. Specifically, some postural factors(vertical deviation angle of forearm, horizontal deviation angle of upperarm, vertical deviation angle of thigh, etc) were highly correlated with psychosocial stress. The results illustrated that PWI scores were associated with some physical workloads. However, psychosocial stress levels couldn't be well related with the pain symptom as well as the actual incidence of low back injury since pain or discomfort regarding low back injury were more complex than that of other musculoskeletal disorders.

  • PDF