• Title/Summary/Keyword: Biomechanical design

Search Result 140, Processing Time 0.034 seconds

Design of dynamic Characteristic of Seat using Estimated Biomechanical Model (인체 진동 모델을 이용한 시트 동적 설계)

  • 조영건;윤용산;박세진
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.811-818
    • /
    • 2000
  • This paper deals with the design of a car seat for enhancing dynamic ride quality using a Biomechanical Model that was developed from the measured whole-body vibration characteristic. For evaluation of seat ride quality, the z-axis acceleration of floor as an input of biomechanical model was measured on a driving passenger car at highway and national road. Form the floor signal and the estimated biomechanical model, overall ride value evaluated by parameter study of seat stiffness and damping. The result shows that overall ride value decreases as the seat damping increases and the sear stiffness decreases. A lot of polyurethane foams were manufactured and tried to evaluate dynamic ride quality of a seat. It is found that stiffness and damping of a seat show a linear relationship, which means the stiffness and damping are not independent each other, So the optimal seat parameters within practically achievable space are determined.

  • PDF

Efficient non-linear analysis and optimal design of biomechanical systems

  • Shojaei, I.;Kaveh, A.;Rahami, H.;Bazrgari, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2015
  • In this paper a method for simultaneous swift non-linear analysis and optimal design/posture of mechanical/biomechanical systems is presented. The method is developed to get advantages of iterations in non-linear analysis and/or generations in genetic algorithm (GA) for the purpose of efficient analysis within the optimal design/posture. The method is applicable for both size and geometry optimizations wherein material and geometry non-linearity are present. In addition to established mechanical systems, the method can solve biomechanical models of human musculoskeletal system. Optimization-based procedures are popular methods for resolving the redundancy at joints wherein the number of unknown muscle forces is far more than the number of equilibrium equations. These procedures involve optimization of a cost function(s) which is assumed to be consistent with the central nervous system's strategy when activating muscles to assure equilibrium. However, because of the complexity of biomechanical problems (i.e., due to non-linear biomaterial, large deformation, redundancy of the problem and so on) efficient analysis are required within optimization procedures as suggested in this paper.

Biomechanical Measuring Techniques for Evaluation of Workload (작업부하 평가를 위한 생체역학적 측정방법)

  • Kim, Jung-Yong;Park, Ji-Soo;Cho, Young-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.445-453
    • /
    • 2010
  • It is necessary to quantitatively evaluate the workload of workers in order to improve the level of safety and efficiency as well as to prevent workers from musculoskeletal disorders. The purpose of this study is to introduce biomechanical methods that are largely used to quantitatively evaluate workload. The biomechanical methods use kinematics and kinetics to analyze the movement and force of biomechanical body. Motion analysis, joint angle measurement, ground reaction force, mathematical model, and electromyography (EMG) were introduced as a tool or device for biomechanical evaluation. In this study, the special feature of each method was emphasized and important tips for field measurement were summarized. The information and technique disclosed in this summary can be used to evaluate and design the workplace better by effectively control the workload of field workers.

The role of research in the creation of athletic footwear

  • Lafortune, Mario A.
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.407-415
    • /
    • 2002
  • Athletic products must meet the needs of athletes and the demands imposed by sports through innovative design. These needs of athletes and requirements of sports are performance, protection and comfort related. In depth knowledge of anatomy and physiology, etiology of commonly reported injuries, and lower extremity mechanics form the basis of product creation/engineering. Game analysis which entails time and frequency surveys of the skills performed during a game, interviews with athletes and coaches, and discussions with medical staffs are used to identify the skills that are critical to the needs of athletes. In lab full biomechanical analyses of these skills and/or physiological responses of the athletes lead to clear functional criterions that serve as guidelines to be met by the design team. The concepts created by the design team are in turns subjected to the same battery of biomechanical analyses. The learning gathered through this pluridisciplinary process is used to further evolve design concepts. The evolution-testing loop is repeated until biomechanical and/or physiological, mechanical and perceptual tests indicate that the design concept meets the established functional design criterions. At that time, the design concepts is ready for manufacturing research and development. Additional biomechanical and physical tests are performed through that phase to confirm that the manufacturing processes preserve the functionality of the design concept. Durability and long term performance of production samples are evaluated through a final three month long weartest program. A rigorous research/testing program is crucial to create and engineer sport products that meet the performance, protection.

Comparison of Biomechanical Stability of Custom-made Hip Implants using Finite Element Analysis (스템 길이에 따른 환자맞춤 인공고관절의 역학적 안정성 비교)

  • Jun, Yongtae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.426-432
    • /
    • 2016
  • Designing a morphologically well-fitted hip implant to a patient anatomy is desirable to improve surgical outcomes since a commercial ready-made hip implant may not well conform to the patient joint. In this study, biomechanical stability of patient-specific hip implants with two different stem lengths was compared and discussed using a 3D finite element analysis (FEA). The FEA results in this study showed that an increase in stem length brings about more the peaked von-Mises stress (PVMS) in the prosthesis and less in the femur. However the decrease in von-Mises stress in the femur causes stress shielding phenomenon that usually leads to considerable bone resorption. Although, in biomechanical stability point of view, this work recommends the use of smaller stems, the length of stem must be determined by considering both the von-Mises stress and the stress-shielding phenomenon.

Biomechanical Effect of Total Disc Replacement on Lumbar Spinal Segment : A Finite Element Analysis (추간판 치환술이 요추분절에 미치는 생체역학적 영향 : 유한요소해석)

  • Park, Won-Man;Kim, Ki-Tack;Hong, Gyu-Pyo;Kim, Yoon-Hyuk;Oh, Taek-Yul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.58-66
    • /
    • 2008
  • The artificial discs have recently used to preserve the motion of the treated segment in lumbar spine surgery. However, there have been lack of biomechanical information of the artificial discs to explain current clinical controversies such as long-term results of implant wear and excessive facet contact forces. In this study, we investigated the biomechanical effects of three artificial implants on the lumbar spinal segments by finite element analysis. The finite element model of intact lumbar spine(L1-S) was developed and the three implants were inserted in L4-L5 segment of the spine model. 5 Nm of flexion and extension moments were applied on the superior plate of L1 with 400 N of compressive load. Excessive motions and high facet contact forces at the surgical level were generated in the all three implanted models. In the flexion, the peak von-Mises stresses in the semi-constrained type implant was higher than those in the un-constrained type implant which would cause wear on the polyethylene core. The results of the study would provide a biomechanical guideline for selecting optimal surgical approach or evaluating the current design of the implants, or developing a new implant.

REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION (신발 설계 및 평가를 위한 컴퓨터 모델)

  • Cheung, Jason Tak-Man;Yu, Jia;Zhang, Ming
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.13-25
    • /
    • 2009
  • Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.

Biomechanical Complications : Fracture and Screw loosening (Biomechanical Complications : 파절과 나사풀림)

  • Kim, Tae in
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.307-317
    • /
    • 2015
  • Although the long-term success of osseointegrated endosseous implants for the support of fixed dental prostheses has been reported, the increasingly widespread use of implant-supported prostheses has led to problems associated with their structural integrity. The most common biomechanical complications observed in dental implant treatment are fracture and screw loosening. The nature of loosening or fracture of dental implant components is complex, since it involves fatigue, fitness, and varied chewing patterns and loads. To assess the service life of the components of the prosthetic system, a knowledge of the loads transmitted through the system is necessary. Design of the final restoration and occlusion in relation to the geometry of a prosthetic restoration has a great influence on the mechanical loading of the implant. It is proposed that control of force in oral cavity may play a larger role in failures than previously believed. Based on theoretic consideration and clinical experiences with dental implant, this article gives simple guidelines for controlling these loads.

Simulations using a whole-body biomechanical model

  • ;Freivalds, Andris
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.140-150
    • /
    • 1990
  • Further developments on a dynamic biomechanical model are presented to assess musculoskeletal stresses and human responses. The model being developed is an extension of the Articulated Total Body (ATB) Model, originally developed by Calsapan Corp. for the study of human dynamics during automobile crashes, later adopted to the U.S.Air Force to simulate the reactions of aircrew personnel to such forces typically encountered in various phases of flight operations. Further refinements were introduced by Freivalds and Kaleps(1984) to account for a human neuromusculature. In this study, modelling of active neuromusculature was described and simulations of whole-body human motion were performed using the ATB Model. It indicated the potential of using a muscularized biomechanical model coupled with CAD capabilities to simulate human responses in a variety of industrial settings as well. This will serve as a basis of incorporating computer aided design methods into a muscularized biomechanical models.

  • PDF