• 제목/요약/키워드: Biomass pretreatment

검색결과 167건 처리시간 0.025초

초음파 결합형 SBR 호기성 소화 모델과 영향 예측 (Performance Evaluation of Hybrid SBR Aerobic Digestion combined with Ultrasonication by using a Mathematical Model)

  • 김성홍;이동우;김동한
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.897-905
    • /
    • 2012
  • Based on the activated sludge model, a simple aerobic digestion model which represents the aerobic sludge digestion by sequencing batch reactor(SBR) equipped with ultrasonicator was composed and performed in this study. The results are as follows. Aerobic digestion efficiency can be increased by adopting ultrasonic pretreatment. For the 5 days of SRT, 24 % of particulate component is predicted to be removed by ultrasonic pretreatment and aerobic digestion. This is 7 %p higher than that of conventional aerobic digestion. A Hybrid SBR aerobic digestion combined with ultrasonication shows higher digestion efficiency than aerobic digestion and ultrasonic pretreatment system. In case of this hybrid system, the digestion efficiency was predicted up to 49 % when the ultrasonication was performed every 2 hours, repeatedly. However, excessive treatment like every hours of ultrasonication in an aerobic digestion process results in adverse effect on TCOD removal because biomass disintegrated completely and the solubilized COD can not be used for the biomass synthesis again.

Extraction of Hemicellulosic Sugar and Acetic Acid from Different Wood Species with Pressurized Dilute Acid Pretreatment

  • Um, Byung-Hwan;Park, Seong-Jik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권2호
    • /
    • pp.172-182
    • /
    • 2014
  • Extraction is a necessary element in the bioconversion of lignocellulosics to fuels and chemicals. Although various forms of chemical pretreatment of cellulosic materials have been proposed, their effectiveness varies depending on the treatment conditions and substrate. In this study, mixed hardwood (MH) and loblolly pine (LP) were pretreated with dilute acid in a 100 mL accelerated solvent extraction (ASE) at the predetermined optimal conditions: temperature: $170^{\circ}C$, acid concentration: 0.5% (w/v), and reaction time: 2~64 min. This method was highly effective for extracting the hemicellulose fraction. Total xmg (defined as the sum of xylose, mannose, and galactose) can be extracted from milled MH and LP through pressurized dilute acid treatment in maximum yields of 12.6 g/L and 15.3 g/L, respectively, representing 60.5% and 70.4% of the maximum possible yields, respectively. The crystallinity index increased upon pretreatment, reflecting the removal of the amorphous portion of biomass. The crystalline structure of the cellulose in the biomass, however, was not changed by the ASE extraction process.

펜톤산화에 의한 바이오매스 분해향상과 펜톤산화 용액 재사용 평가 (Improvement of Biomass Degradation by Fenton Oxidation and Reusability of the Fenton Oxidation Solution)

  • 정소연;이재원
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, the reusability of the Fenton oxidation solution was evaluated to reduce the cost of the pretreatment process. Biomass was sequential subjected to Fenton oxidation-hydrothermal treatment and enzymatic hydrolysis to produce monosaccharides. The liquid solution recovered after Fenton oxidation contained OH radicals with a concentration of 0.11 mol/L. This liquid solution was reused for a new Fenton oxidation reaction. After Fenton oxidation, hydrothermal treatment was performed under the same conditions as before, and 9.34-13.63 g/L of xylose was detected. This concentration was slightly lower than that of a fresh Fenton oxidation solution (16.51 g/L) but was higher than that obtained by hydrothermal treatment without Fenton oxidation (2.72 g/L). The degradation rate during hydrothermal pretreatment involving Fenton oxidation was 36.02%, which decreased (29.24-31.05%) slightly when the liquid solution recovered after Fenton oxidation was reused. However, the degradation rate increased compared to that measured from hydrothermal treatment without Fenton oxidation (15.21%). Moreover, the yield after enzyme hydrolysis decreased in the following order: fresh Fenton oxidation-hydrothermal treatment (89.64%) > Fenton oxidation with reused solution-hydrothermal treatment (74.84%) > hydrothermal treatment without Fenton oxidation (32.05%).

Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi

  • Lee, Jae-Won;Gwak, Ki-Seob;Park, Jun-Yeong;Park, Mi-Jin;Choi, Don-Ha;Kwon, Mi;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • 제45권6호
    • /
    • pp.485-491
    • /
    • 2007
  • The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81 % compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01 %) compared to non-pre treated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass.

Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts

  • 곽기섭;구본욱;박나현;정한섭;최준원;여환명;최인규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.520-520
    • /
    • 2009
  • Organic by-products derived from cellulose and lignin during organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of $H_2SO_4$ and NaOH as catalysts, respectively, were subjected to various analyses to elucidate their effects on further performance of biological ethanol fermentation and provide preliminary data for the structure and utilization of organosolv lignin. Monomeric sugars amounted to ca. 2.2-7.7% in the organosoluble fraction of the organosolv pretreatment with $H_2SO_4$, while significantly low amount of sugars (0.2-0.3%) were determined in that of the organosolv pretreatment with NaOH. In case of addition of $H_2SO_4$ during organosolv pretreatment of biomass, a fermentation of the organosoluble fraction could be considered as an essential process to increase an efficiency of biomass utilization as well as yield of bioethanol. Precipitates, insoluble by-products in the solvent mixture, were also cficiency oed by diverse analytical methods and revealed that these were typically composed of a lignin moiety regardless of catalyst. According to the results of nuclear magnetic resonance (NMR), Fourier Tcinsform Infrared Spectroscopy (FT-IR) and Gel permeation chromatograp r (GPC), the main components of precipitates seem to be lignin polymers. However, their structures could be slightly modified during pretreatment and mixed with some carbohydrates by chemical bonds and/or physical associations.

  • PDF

Biosorption of Cr, Cu and Al by Sargassum Biomass

  • Lee, Hak-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제2권2호
    • /
    • pp.126-131
    • /
    • 1997
  • The biosorption and desorption of Cr, Cu and Al were carried out using brown marine algae Sargassum fluitans biomass, known as the good biosorbent of heavy metals. The content of alginate bound to light metals could be changed by physical and chemical pretreatment. The maximum uptake of Cr, Cu and Al was independent of the alginate content. The maximum uptaker of Al was two times(mole basis) than those of Cu and Cr. The aluminum-alginate complex was found in the sorption solution of raw and protonated biomass. Most of Cu, Al and light metals sorbed in the biomass were eluted at pH 1.1. However, only 5 to 10% of Cr sorbed was eluted at pH 1.1. The stoiceometric ion exchange between Cu and Ca ion was observed on Cu biosorption with Ca-loaded biomass. A part of Cr ion was bound to biomass as Cr(OH)2+ or Cr(OH)2+. Al was also bound to biomass as multi-valence ion and interfered with the desorbed Ca ion. The behavior of raw S. fluitans in ten consecutive sorption-desorption cycles has been investigated in a packed bed flow-through-column during a continuous removal of copper from a 35 mg/L aqueous solution at pH 5. The eluant used was a 1%(w/v) CaCl2/HC solution at pH 3.

  • PDF

반탄화 과정을 통한 바이오매스의 소수성 개선 연구 (A Study on the Improved the Hydrophobicity of Torrefied Biomass)

  • 정재성;김경민;정현준;김규보;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.49-57
    • /
    • 2019
  • Biomass, a carbon-neutral fuel, has great advantages because it can replace fossil fuels to reduce greenhouse gas emissions. However, due to its low density, high water content, and hydrophilicity, biomass has disadvantages for transportation and storage. To improve these properties, a pretreatment process of biomass is required. One of the various pre-treatment technologies, torrefacion, makes biomass similar to coal through low-temperature pyrolysis. In this study, torrefacion treatment was carried out at 200, 230, 250, 280, and $300^{\circ}C$ for wood pellet, empty fruit bunch (EFB) and kenaf, and the feasibility of replacing coal with fuel was examined. Hygroscopicity tests were conducted to analyze the hydrophobicity of biomass, and its chemical structure changes were investigated using Infrared spectrum analysis. It was confirmed that the hygroscopicity was decreased gradually as the torrefacion temperature increased according to the hygroscopicity tests. The hydrophilicity was reduced according to the pyrolysis of hemicellulose, cellulose, and lignin of biomass.

바이오에탄올 원료로서 활용평가를 위한 낙엽의 전처리 비교 (Comparison of pretreatment of fallen leaves for application evaluation by Bio-ethanol raw material)

  • 최효연;김재형;박대원
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.241-246
    • /
    • 2014
  • 본 연구는 바이오에탄올을 생산하고자 대표적인 임업부산물인 낙엽을 바이오매스로 하여 전처리 과정을 거친 후 효소가수분해 공정을 적용하여 당화반응 특성을 비교 하였다. 전처리 방법은 화학적으로 산(HCl), 알칼리(NaOH, $NH_3$)처리하였고 각각 침지법, 교반법, 고압멸균법을 적용하여 실험하였다. 처리 효율은 효소가수분해 진행 후 포도당 생산량으로 확인하였다. 실험결과, 알칼리 전처리에서는 산 전처리 대비 18% 높은 글루코즈 생산량을 보여 바이오에탄올 생산을 위한 임업폐기물 화학적 전처리 방법으로는 알칼리처리가 효율이 더 높은 것으로 확인되었다. 또한 화학적 처리방법 중 각 방법을 적용하여 비교한 결과, 모든 방법이 알칼리-수산화나트륨 처리하였을 때 가장 높게 나왔다. 본 연구의 결과를 바탕으로 목질계 바이오매스 중 하나인 낙엽을 기질로 전처리 및 효소가수분해 공정의 가능성을 확인하였고 차후 바이오에탄올 생산에도 영향을 미칠 것으로 예상된다.

Effect of Different Pretreatment Methods on the Bioconversion of Rice Bran into Ethanol

  • Eyini, M.;Rajapandy, V.;Parani, K.;Lee, Min-Woong
    • Mycobiology
    • /
    • 제32권4호
    • /
    • pp.170-172
    • /
    • 2004
  • The efficiency of acid, enzyme and microbial pretreatment of rice bran was compared based on the content of cellulose, hemicellulose, reducing sugars and xylose in the substrate. An isolate of Aspergillus niger or a strain of Trichoderma viride(MTCC 800) was employed for microbial pretreatment of rice bran in solid state. Acid pretreatment resulted in the highest amount of reducing sugars followed by enzyme and microbial pretreatment. A. niger showed a higher rate of hydrolysis than T. viride. The rice bran hydrolysate obtained from the different methods was subsequently fermented to ethanol either by Zymomonas mobilis(NCIM 806) or by Pichia stipitis(NCIM 3497). P. stipitis fermentation resulted in higher ethanol(37% higher) and biomass production($76{\sim}83%$ higher) than those of Z. mobilis. Maximum ethanol production resulted at 12h in Zymomonas fermentation, while in Pichia fermentation, it was observed at 60h. Microbial pretreatment of rice bran by A. niger followed by fermentation employing P. stipitis was more efficient but slower than the other microbial pretreatment and fermentation.

combined severity를 이용한 유체대의 묽은 산 전처리 (Dilute-acid pretreatment of rapeseed straw of using the combined severity)

  • 정태수;오경근
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.244.2-244.2
    • /
    • 2010
  • Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide into monomeric sugars. In this study, dilute sulfuric acid used as a catalyst for the pretreatment of rapeseed straw. Hydrolysis can be performed enzymatically, and with dilute or concentrate mineral acids. Dilute-acid hydrolysis of rapeseed straw was optimized through the utilization of combined severity. Evaluation criteria for optimization of the pretreatment conditions were based on high xylose recovery and low inhibitor contents in the hydrolyzates. In addition, this paper reports the compositional analysis of hydrolyzate liquors and solid residues, xylose and glucose mass balance closures, and digestibility results of the acid pretreated rapeseed straw.

  • PDF