• Title/Summary/Keyword: Biomass by land types

Search Result 13, Processing Time 0.027 seconds

Biomass Carbon Emissions according to Conversion of Forest Land in Korea (산지전용에 따른 우리나라의 임목바이오매스 탄소배출량)

  • Kwon, Soon-Duk;Seo, Jeong-Ho;Son, Yeong-Mo;Park, Young-Kyu
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.2
    • /
    • pp.10-15
    • /
    • 2005
  • This study was achieved by purpose to measure carbon emissions by conversion of forest land in Korea to correspond to UNFCCC. The conversion of forest land data extracted in forest basis statistical data during the latest 5 years from 2000 to 2004, and biomass carbon emissions used biomass extension factor by forest types and carbon conversion factor. During the latest 5 years, the forest land of the annual means about 7,200ha was conversed as other expenditure and tree volume of the annual mean about $212,000m^3$ was felled. It was calculated that total biomass carbon emissions by conversion of the forest land emits annual mean 105,000tC during the latest 5 years. Biomass carbon emissions by forest types was calculated that coniferous forest emits 54,000tC and deciduous forest emits 51,000tC. It was calculated that carbon emissions per ha by conversion of the forest land emits annual mean 14.4tC/ha during the latest 5 years. Seeing by forest types, coniferous forest emits 13.3tC/ha and deciduous forest emits 18.5tC/ha. Therefore, it was shown that deciduous forest emits more carbon per unit area than coniferous forest.

  • PDF

Analysis of Environmental Change after Planting for Prevention of Stone Hazarding Guizhou, China (중국 귀주성 석막화 방지 조림 후 환경변화 분석)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.180-188
    • /
    • 2010
  • This study was carried out to evaluate the analysis of environmental change (forest resources and soil water conservation by land types) after planting for prevention of between 2003 and 2006 from the stone hazarding areas in Guizhou province, China. Mean diameter growth of the trees was highest for Melia azedarach, followed by Robinia pseudoacacia, Lonicera fulvotomentosa, Choerospondias axillaris, Cupressus duclouxiana, and Eucommia uimoides Oliv. Mean height growth of the trees was greatest for R. pseudoacacia, followed by Ilex kudincha, M. azedarach, C. duclouxiana, C. axillaris, E. uimoides Oliv, Zanthoxylum bungeanum, and L. fulvotomentosa. Tree biomass was greater at the afforestation sites by 1.22-1.71 ton/ha compared to that of severely eroded mountain areas. The capacities of soil water conservation by land types were 2,790 ton/ha at latent rock desertification farmland, 2,655 ton/ha at rock desertification farmland, 1,680 ton/ha at dolomite sandstone hilly country, 1,650 ton/ha at halfstony hilly country, and 1,590 ton/ha at karst physiognomy site. Soil erosion was estimated to be 1,285 ton/$km^2$ which had been 2,178 ton/$km^2$ before afforestation. Also, we should be continuative manage after planting for prevention of the stone hazarding areas in Guizhou province, China.

HAZARD ASSESSMENT OF CURRENT STATE OF VEGETATION DEGRADATION USING GIS, A CASE STUDY: SADRA REGION, IRAN

  • Masoudi, Masoud;Amiri, E.
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • The entire land of Southern Iran faces problems arising out of various types of land degradation of which vegetation degradation forms one of the major types. The present work introduces a model developed for assessing the current status of hazard of vegetation degradation using Geographic Information System (GIS). This kind of assessment differs from those assessments based on vulnerability or potential hazard assessments. The Sadra watershed which covers the upper reaches of Marharlu basin, Fars Province, has been chosen for a hazard assessment of this type of degradation. The different kinds of data for indicators of current status of vegetation degradation were gathered from collecting of field data and also records of the governmental offices of Iran. Taking into consideration three indicators of current status of vegetation degradation the model identifies areas with different hazard classes. By fixing the thresholds of severity classes of the three indicators including per cent of vegetation cover, biomass production and ratio of actual biomass to potential biomass production, a hazard map for each indicator was first prepared in GIS. The final hazard map of current status of vegetation degradation was prepared by intersecting three hazards in the GIS. Results show areas under severe hazard class have been found to be widespread (89 %) while areas under moderate and very severe hazard classes have been found less extensive in the Sadra watershed. The preparation of hazard maps based on the GIS analysis of these indicators will be helpful for prioritizing the areas to initiate remedial measures.

Classification ofWarm Temperate Vegetations and GIS-based Forest Management System

  • Cho, Sung-Min
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.216-224
    • /
    • 2021
  • Aim of this research was to classify forest types at Wando in Jeonnam Province and develop warm temperate forest management system with application of Remote Sensing and GIS. Another emphasis was given to the analysis of satellite images to compare forest type changes over 10 year periods from 2009 to 2019. We have accomplished this study by using ArcGIS Pro and ENVI. For this research, Landsat satellite images were obtained by means of terrestrial, airborne and satellite imagery. Based on the field survey data, all land uses and forest types were divided into 5 forest classes; Evergreen broad-leaved forest, Evergreen Coniferous forest, Deciduous broad-leaved forest, Mixed fores, and others. Supervised classification was carried out with a random forest classifier based on manually collected training polygons in ROI. Accuracy assessment of the different forest types and land-cover classifications was calculated based on the reference polygons. Comparison of forest changes over 10 year periods resulted in different vegetation biomass volumes, producing the loss of deciduous forests in 2019 probably due to the expansion of residential areas and rapid deforestation.

Land Use and Greenspace Structure in Several Cities of Kangwon Province (강원도 일부 도시들의 토지이용 및 녹지구조)

  • 조현길;이기의;윤영활;서옥하
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.4
    • /
    • pp.171-183
    • /
    • 1998
  • The purpose of this study was to analyze urban greenspace area and vegetation structure by land use types for both Chuncheon and Kangleung. Natural and agricultural lands were predominant in the study cites, as 75-80% of total area. Residential lands accounted for about 10%, and commercial and industrial lands(including transportation), 5-10%. Only 10-20% of urban residential and commercial area was covered with greenspace. Woody plant cover was 12-13%, and tree density was 1.5 trees/100$m^2$ for urban lands(all land use types except natural land) in both cities. The tree-age structure was largely characterized by young, growing tree population, and species diversity within a diameter class decreases as the diameter classes get larger. Urban lands of both cities had quite a similar species composition of woody plants (similarity index of 0.65). Street trees in Chuncheon were intensively pruned annually to protect the above ground utility lines. Some strategies were explored to solve problems found in the existing greenspace structures. They included increase of biomass and greenspace area through minimization of unnecessary impervious surfaces, creation of multilayered and multiaged vegetation structures, relocation of above ground utility lines and avoidance of intensive tree pruning, and establishment of greenspace proximity and connectivity.

  • PDF

Spatial and temporal dynamic of land-cover/land-use and carbon stocks in Eastern Cameroon: a case study of the teaching and research forest of the University of Dschang

  • Temgoua, Lucie Felicite;Solefack, Marie Caroline Momo;Voufo, Vianny Nguimdo;Belibi, Chretien Tagne;Tanougong, Armand
    • Forest Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2018
  • This study was carried out in the teaching and research forest of the University of Dschang in Belabo, with the aim of analysing land-cover and land-use changes as well as carbon stocks dynamic. The databases used are composed of three Landsat satellite images (5TM of 1984, 7ETM + of 2000 and 8OLI of 2016), enhanced by field missions. Satellite images were processed using ENVI and ArcGIS software. Interview, focus group discussion methods and participatory mapping were used to identify the activities carried out by the local population. An inventory design consisting of four transects was used to measure dendrometric parameters and to identify land-use types. An estimation of carbon stocks in aboveground and underground woody biomass was made using allometric models based on non-destructive method. Dynamic of land-cover showed that the average annual rate of deforestation is 0.48%. The main activities at the base of this change are agriculture, house built-up and logging. Seven types of land-use were identified; adult secondary forests (64.10%), young secondary forests (7.54%), wetlands (7.39%), fallows (3.63%), savannahs (9.59%), cocoa farms (4.28%) and mixed crop farms (3.47%). Adult secondary forests had the highest amount of carbon ($250.75\;t\;C\;ha^{-1}$). This value has decreased by more than 60% for mixed crop farms ($94.67\;t\;C\;ha^{-1}$), showing the impact of agricultural activities on both forest cover and carbon stocks. Agroforestry systems that allow conservation and introduction of woody species should be encouraged as part of a participatory management strategy of this forest.

Impact of Northeast Asian Biomass Burning Activities on Regional Atmospheric Environment (동북아시아 지역의 바이오매스 연소 활동이 지역 대기 환경에 미치는 영향)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.184-196
    • /
    • 2012
  • Biomass burning activities(BBA) are caused by both natural and anthropogenic origins. Due to emissions of greenhouse gases and atmospheric aerosols during the burning process, BBA has been known to be one of important sources of atmospheric pollution and the climate change. However, the monitoring of BBA and its effects on atmospheric environment are not simple. This study evaluates the trends of BBA and its impact on atmospheric environment by using earth observing satellite. The results show that the most BBA were found over ever green, green vegetation types, and irrigated land cover types in study region. The trends of BBA and aerosol optical thickness which represents relative aerosol loading in the atmosphere, show similar pattern. Aerosol increases caused by BBA highlight the effectiveness of these mechanisms and would affect the regional atmospheric environment and climate change.

Land Use and Greenspace Structure in Seoul - Case of Kangnam-gu and Junglang-gu - (서울시의 토지이용 및 녹지구조 - 강남구 및 중랑구를 대상으로 -)

  • 조현길;이경재;권전오
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.1
    • /
    • pp.30-41
    • /
    • 1998
  • This study analyzed urban greenspace area and vegetation structure by land use types for Kangnam-gu and Junglang-gu in Seoul different in income and building construction date. The study districts had a similar areal distribution of land use types. Residential lands accounted for about 32~37% of total area, natural lands, 19~22%, commercial and industrial lands(including transportation), 13~18%, and institutional lands, 13~17%. Greenspace covered only 20~30% of urban residential and commercial area in which human activities of living concentrate. Canopy stocking level in urban lands (all land uses except natural and agrecultural lands) was about 39% for Kangnam-gu and 50% for Junglang-gu, showing tree planting potential slightly higher in Kangnam-gu than in Junglang-gu. Woody plant cover was approximately 13%, and tree density was 3 trees/100m$^{2}$ forurban lands in both districts. The tree-age structure was largely characterized by young, growing tree population, and species diversity within a diameter class decreases as the diameter classes get larger. Urban lands of both districts had quite a similar species composition of woody plants (similarity indez of 0.70). Income and bulding construction date did not result in significant diference between the two districts in vegetation structure for urban lands. Some strategies were ezplored to solve problems found in the present greenspace structures. They included increase of biomass and greenspace area through minimization of unnecessary impervious surfaces, creation of multilayered and multiaged vegetation structures, and avoidance of intensive tree pruning and relocation of above ground utility lines.

  • PDF

Climate Change and Coping with Vulnerability of Agricultural Productivity (기후변화와 농업생산의 전망과 대책)

  • 윤성호;임정남;이정택;심교문;황규홍
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

Verification of International Trends and Applicability in the Republic of Korea for a Greenhouse Gas Inventory in the Grassland Biomass Sector (초지 바이오매스 부문 온실가스 인벤토리 구축을 위한 국제 동향과 국내 적용 가능성 평가)

  • Sle-gee Lee;Jeong-Gwan Lee;Hyun-Jun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.4
    • /
    • pp.257-267
    • /
    • 2023
  • The grassland section of the greenhouse gas inventory has limitations due to a lack of review and verification of biomass compared to organic carbon in soil while grassland is considered one of the carbon storages in terrestrial ecosystems. Considering the situation at internal and external where the calculation of greenhouse gas inventory is being upgraded to a method with higher scientific accuracy, research on standards and methods for calculating carbon accumulation of grassland biomass is required. The purpose of this study was to identify international trends in the calculation method of the grassland biomass sector that meets the Tier 2 method and to conduct a review of variables applicable to the Republic of Korea. Identify the estimation methods and access levels for grassland biomass through the National Inventory Report in the United Nations Framework Convention on Climate Change and type the main implications derived from overseas cases. And, a field survey was conducted on 28 grasslands in the Republic of Korea to analyse the applicability of major issues. Four major international issues regarding grassland biomass were identified. 1) country-specific coefficients by land use; 2) calculations on woody plants; 3) loss and recovery due to wildfire; 4) amount of change by human activities. As a result of field surveys and analysis of activity data available domestically, it was found that there was a significant difference in the amount of carbon in biomass according to use type classification and climate zone-soil type classification. Therefore, in order to create an inventory of grassland biomass at the Tier 2 level, a policy and institutional system for making activity data should develop country-specific coefficients for climate zones and soil types.