• Title/Summary/Keyword: Biomass ash

Search Result 125, Processing Time 0.019 seconds

Effect of Cattle Slurry on Growth, Biomass Yield and Chemical Composition of Maize Fodder

  • Rahman, S.M.E.;Islam, M.A.;Rahman, M.M.;Oh, Deog-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1592-1598
    • /
    • 2008
  • An experiment was carried out to study the effect of cattle slurry on maize fodder (Zea mays) production. Maize fodder was produced at 4 cattle slurry levels $T_0$ (0 ton/ha), $T_1$ (10 ton/ha), $T_2$ (12 ton/ha) and $T_3$ (14 ton/ha) in a randomized block design. Agronomic characteristics, plant heights, circumference of stems, number of leaves, leaf area and dry matter yield of maize fodder were measured. Maize plant height and stem circumference were significantly (p<0.01) influenced by the increasing rate of cattle slurry at 15, 30, 45 and 56 days after sowing. Number of leaves of fodder plants was not significant but leaf area was significant (p<0.05) among the treatment groups. The highest biomass yield (p<0.01) of maize fodder was observed in $T_2$ (44.0 ton/ha). For crude protein content, a significant difference (p<0.01) was observed in the treatment groups and the highest value was observed in $T_2$ (11.99%). Organic matter content of maize fodder showed a significant difference but ash, ADF and NDF contents showed no significant differences among treatment groups. From this study it may be concluded that the application of 12 tons of cattle slurry/ha was optimal for production of biomass and nutrient content of maize fodder.

Reusing the Liquid Fraction Generated from Leaching and Wet Torrefaction of Empty Fruit Bunch

  • Lee, Jae-Won;Choi, Jun-Ho;Im, Hyeon-Soo;Um, Min;Lee, Hyoung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.372-377
    • /
    • 2019
  • Leaching ($60^{\circ}C$, 5 min) and wet torrefaction ($200^{\circ}C$, 5 min) of empty fruit bunch (EFB) were carried out to improve the fuel properties; each liquid fraction was reused for leaching and wet torrefaction, respectively. In the leaching process, potassium was effectively removed because the leaching solution contained 707.5 ppm potassium. Inorganic compounds were accumulated in the leaching solution by increasing the reuse cycle of leaching solution. The major component of the leached biomass did not differ significantly from the raw material (p-value < 0.05). Inorganic compounds in the biomass were more effectively removed by sequential leaching and wet torrefaction (61.1%) than by only the leaching process (50.1%) at the beginning of the liquid fraction reuse. In the sequential leaching and wet torrefaction, the main hydrolysate component was xylose (2.36~4.17 g/L). This implied that hemicellulose was degraded during wet torrefaction. As in the leaching process, potassium was effectively removed and the concentration was accumulated by increasing the reuse cycle of wet torrefaction hydrolysates. There was no significant change in the chemical composition of wet torrefied biomass, which implied that fuel properties of biomass were constantly maintained by the reuse (four times) of the liquid fraction generated from leaching and wet torrefaction.

Characteristics of Biochar Derived from Lignocellulosic Biomass and Effect of Adsorption of Methylene Blue (목질계 바이오매스 유래 바이오차의 특성과 메틸렌블루 흡착 효과)

  • Yoon-Jung Shin;Dae-Yeon Song;Eun-Ju Lee;Jae-Won Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.153-160
    • /
    • 2023
  • In this study, biochar was produced from biomass waste, and its methylene blue adsorption capacity was evaluated. The major components of the biomass were cellulose, hemicellulose, and lignin. Ash content was high in waste wood. Carbonization yield decreased as carbonization temperature increased, as did hydrogen and oxygen content, but carbon content increased. Increased carbonization temperature also increased the specific surface area and micropores of biochar. At 600 ℃, biochar had the highest specific surface area (216.15~301.80 m2 /g). As a result of methylene blue adsorption on biochar carbonized at 600 ℃, oak, waste wood, and pruned apple tree branches fit the Freundlich model, while pruned peach tree branches fit the Langmuir model. In the adsorption kinetics of methylene blue on biochar, oak and pruned peach tree branches fit a pseudo-first-order model, while waste wood and pruned apple tree branches fit a pseudo-second-order model.

Study on Torrefaction Characteristics of Baggase (사탕수수 부산물의 반탄화 특성에 관한 연구)

  • Jeeban, Poudel;Kim, Won-Tae;Ohm, Tae-In;Oh, Sea Cheon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.672-677
    • /
    • 2014
  • Torrefaction is a thermal treatment process to pre-treat biomass at temperature of $200{\sim}300^{\circ}C$ under an inert atmosphere. It was known that torrefaction process strongly depended on the decomposition temperature of the lignocellulosic constituents in biomass. In this work, the torrefaction characteristics of baggase has been studied. This study focuses on the relation between the energy yields, heating values, gas emission, volatile and ash constituents with torrefaction temperatures and times. The activation energies of baggase torrefaction has been studied by using TGA (Thermogravimetric Analyzer). From this work, it was seen that ash constituents and heating values were increased with torrefaction temperature, while volatile constituents and energy yields decreased. It was also found that carbon monoxide containing oxygen were decomposed at a lower temperature than those of hydrocarbon compounds, $C_xH_y$.

Short-term effects of elevated CO2 on periphyton community in an artificially constructed channel

  • Park, Hye-Jin;Kwon, Dae-Ryul;Kim, Baik-Ho;Hwang, Soon-Jin
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • Background: Direct impact of inorganic carbon (i.e., carbon dioxide ($CO_2$)) on the periphyton community is important to understand how and to what extent atmospheric conditions can affect the structure and dynamics of these communities in lotic systems. We investigated the influence of elevated $CO_2$ concentration on the periphyton community in the artificially constructed channels during the winter period. The channels made of acrylic paneling were continuously supplied with surface water discharged from a small reservoir, which was supported with ground water, at a flow rate of 5 L/min, and water temperature ranging $4-5^{\circ}C$. The effects of elevated $CO_2$ concentrations (790 ppm) were evaluated in comparison with the control (395 ppm $CO_2$) by analyzing pH, water carbon content and nutrients in water, periphyton composition and biomass, chlorophyll-a, ash-free dry-matter at 2-day intervals for 10 days. Results: After the addition of $CO_2$, significant decreases of pH, $NH_3-N$, and $PO_4-P$ (p < 0.05) and increases of chlorophyll-a, ash-free dry-matter, and the cell density of periphyton (p < 0.01) were observed, whereas the species composition of periphyton and water carbon content did not change. Conclusions: These results suggest that elevated $CO_2$ in flowing water system with low temperature could facilitate the growth of periphyton resulting in biomass increase, which could further influence water quality and the consumers throughout the food web.

Characteristics of Bio Pellets from Spent Coffee Grounds and Pinewood Charcoal Based on Composition and Grinding Method

  • Nopia CAHYANI;Andi Detti YUNIANTI;SUHASMAN;Kidung Tirtayasa Putra PANGESTU;Gustan PARI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.23-37
    • /
    • 2023
  • One type of biomass that has promising potential for bio pellet production is spent coffee grounds (SCGs). However, previous studies have shown that SCGs in bio pellets cause a lot of smoke. Therefore, they need to be mixed with a material that has a higher calorific value to produce better quality pellets. One material that can be used is pine wood because it has a natural resin content that can increase the calorific value. The aim of this study was to examine the quality of bio pellets produced with SCGs and pine wood charcoal at different particle sizes. The charcoal was ground using either a hammer mill (HM) or a ball mill (BM). Pine wood charcoal was mixed with SCGs at ratios of SCGs to pine wood charcoal of 4:6 and 6:4 by weight, respectively, and the adhesive used a tapioca with a composition ratio 5% of the raw material. The bio pellets were produced using a manual pellet press. The quality of the bio pellets was assessed based on Indonesian National Standard (SNI) 8021-2014, and the physical observations include flame length, burning rate, and compressive strength. The average water content, ash content, and calorific value of the bio pellets were in accordance with SNI 8021-2014, but the density and ash content values were below the standard values. The BM variation of bio pellets had a higher compressive strength than the HM variation, and the 4:6 BM variation had the longest burning time compared with 4:6 HM.

Study of Oil Palm Biomass Resources (Part 4) Study of Pelletization of Torrefied Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 IV - 반탄화된 오일팜 바이오매스의 펠릿 성형 특성 연구 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Lee, Ji-Young;Cho, Hu-Seung;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.24-34
    • /
    • 2015
  • Domestic companies supplying electricity must increase obligatory duty to use renewable energy annually. If not met with obligatory allotment, the electricity-supply companies must pay RPS (Renewable Portfolio Standards) penalty. Although the power plants using a pulverizing coal firing boiler could co-fire up to around 3 per cent with wood pellets mixed in with coal feedstock without any major equipment revamps, they recorded only about 60 per cent fulfillment of RPS. Consequently, USD 46 million of RPS penalty was imposed on the six power supplying subsidiaries of GENCOs in 2014. One of the solutions to reduce the RPS penalty is that the power supply companies adopt the co-firing of torrefied lignocellulosic biomass in coal plants, which may contribute to the use of over 30 per cent of torrefied biomass mixed with bituminous coals. Extra binder was required to form pellets using torrefied biomass such as wood chips, PKS (Palm Kernel Shell) and EFB (Empty Fruit Bunch). Instead of corn starch, 30, 50 and 70 per cent of Larix saw dusts were respectively added to the torrefied feedstocks such as Pinus densiflora chips, PKS and EFB. The addition of saw dusts led to the decrease of the calorific values of the pellets but the forming ability of the pelletizer was exceedingly improved. Another advantage from the addition of saw dusts stemmed from the reduction of ash contents of the pellets. Finally, it was confirmed that torrefied oil palm biomass such as PKS and EFB could be valuable feedstocks in making pellets through improved binding ability.

Characterization of Chemical Composition and Thermal Behavior of Biomass Originated from Tobacco Industry (담배산업유래 바이오매스의 화학성분 및 열분해 특성 평가)

  • Sung, Yong Joo;Seo, Yung Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.138-146
    • /
    • 2008
  • The chemical compositions, cell wall biopolymers and non-isothermal behavior of the stem biomass of Nicotiana Tabacum originated from tobacco industry were investigated in depth. On a weight basis, the contents of total ash and total sugar are 19.1% and 20.7% respectively. Lignin content was around 3% of tobacco stem biomass while pectin was over 7%. The holo-cellulose content in cell wall biopolymer was around 13% and the $\alpha$-cellulose constitutes 60% of the total holo-cellulose. The thermal behavior of stem biomass showed different patterns depending on either inert (nitrogen) or oxidizing (air) atmospheric condition. In the air atmosphere, the rapid thermal decompositions at around $473^{\circ}C$ and $581^{\circ}C$ were recorded as the peaks in DTG curve, while the peaks were not shown in the nitrogen atmosphere condition. The thermal analysis of the freeze dried soluble obtained from hot water extraction of tobacco stem biomass showed that the rapid thermal decomposition at around $581^{\circ}C$ in the air atmosphere was due to the residual char originated from the soluble fraction. The distinct difference in thermal decomposition between hemicellulose and cellulose were easily found in the DTG curve obtained in the nitrogen atmosphere.

Thermal Characteristics of Sulgigemi Pellets Using Biomass (바이오매스를 이용한 술지게미 펠릿의 열적 특성)

  • Kim, Dae-Nyeon;Kim, Duk-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.108.1-108.1
    • /
    • 2011
  • This paper proposes the method to develop the fuel of suljigemi pellets using agricultural by-products the occurred during the manufacturing of alcohol. This paper is the goal to make sulgigemi pellet fuel for develops pellet of high calorie. The methods of sulgigemi pellet manufacturing well mix as the dough with the water and the sulgigemi. And then we have dried in the after compression and molding using well mixed the sulgigemi. The moisture of pellets has dried it removed until about 85%. Suljigemi pellet has the effect of zero emission as the soil conditioner using ash after burning. The merits for the sulgigemi pellet are the convenience of storage and custody. Also sulgigemi pellet has the reduction effect of carriage fee, fuel economy and low-cost high-efficiency effects, environmentally clean fuel as CO2 emissions savings. In experiment, we confirmed to calories of the wood pellet and the sulgigemi pellet. The calorie of the suljigemi pellets has high 233 kilo calories than the wood pellets. So the technologies of the sulgigemi fuel pellets are developing low carbon, green growth renewable energy fuel through futuristic energy system will be.

  • PDF

Characteristics of Torrefaction with Water Hyacinth

  • Song, Dae Bin;Kim, Min Soo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.180-184
    • /
    • 2013
  • Purpose: This study explored the factors influencing heating value in the process of torrefaction of water hyacinth. Methods: Torrefaction was applied with three temperature settings (200, 300, $400^{\circ}C$) and three time settings (1, 2, 3 h) using small electric heaters (11.3L of holding volume). This study investigated the heating values with the washing process and process factors influenced the torrefaction. In addition, this study compared the heating values in washed and unwashed samples and suggested the optimal conditions for increasing heating value. Results: Torrefaction increased the heating value by 8.18 ~ 30.04%. Comparing heating values of each condition, the optimal temperature for torrefaction was $300^{\circ}C$ and holding time was 1 hour. The washing process increased the heating value by 19 ~ 27%. The heating value of the sample treated at $300^{\circ}C$ for three hours was 4310.80 kcal/kg, which was greater than the first class wood pellet of 4300 kcal/kg. Conclusions: This study proved that the torrefaction and washing process increased the heating value of water hyacinth. Therefore, water hyacinth is expected to be an eco-friendly biomass which substitutes for wood pellet.