• Title/Summary/Keyword: Biomass Allometric Equations

Search Result 50, Processing Time 0.026 seconds

Productive Structure and Net Production of a Larix leptolepis Planatation (낙엽송 인공 조림 임분의 생산구조와 생산성)

  • 권기철;김홍은;이종희
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • This study was to investigate the productivity of 24-year-old Larix leptolepis plantation in the Experimental Forest of Chungbuk National University located in Mt. Worak, Chungchungbuk-do, Korea. Eight plots(l0m x l0m) were established in the larch plantation in the 9th compartment. Eight sample trees were selected and cut off. Stem, branches and leaves were weighed respectively with the stratified clipping method, and analyzed for productive structure. The allometric regression equations between dry weight of each component(stem, branches. and needles) and D$^2$H were obtained. The results obtained are summarized as follows; (1) Photosynthetic layer of Larix leptolepis was shown at about 13m in height, and maximum needle amount of crown at 15-l6m in height. (2) The total biomass of aboveground was 186.25tons/ha(86.3% from stem, 9.9% from branches and 3.8% from needles). (3) Annual net production of aboveground was 12.17tons/ ha/yr, and the ratios of stem, branches and needles to that of aboveground, 0.835, 0.12, and 0.045, respectively.

  • PDF

Productive Structure and Net Production of Quercus mongolica forest in Mt. Taehwa (Kwangju, Kyonggi-do) (경기도 광주시 태화산 신갈나무림의 생산구조와 생산성)

  • 손석용;권기철;정택상
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This study was to investigate the productivity of 30-year-old Quercus mongolica forest in the Experimental Forest of Seoul National University located in Mt. Taehwa, Kyonggi-do, Korea. Eight sample trees were selected and cut off. Stem, branches and leaves were weighed respectively with the stratified clipping method, and analyzed for productive struts lure. The allometric regression equations between dry weight of each component(stem, branches, and needles) and D$^2$H were obtained. The results obtained are summarized as follows; (1) Photosynthetic layer of Quercus mongolica was shown at about 4m in height, and maximum needle amount of crown at 10m in height. (2) The total biomass of aboveground was 67.886ton/ha(75.5% from stem, 19.4% from branches and 5.1% from needles). (3) Annual net production of aboveground was 12.76ton/ha/yr, and the ratios of stem, branches and needles to that of aboveground, 44.1%, 28.7% and 27.2%, respectively.

  • PDF

Estimating the Individual Dry Weight of Sheet Form Macroalgae for Laboratory Studies (실험실 연구를 위한 엽상형 해조류의 생체량 추정 방법)

  • Kim, Sangil;Youn, Seok-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.244-250
    • /
    • 2019
  • We investigated the relationship between morphological characteristics and individual dry weight to develop a method for estimating the individual dry weight of sheet form macroalgae: Ulva australis, Ulva linza, Pachymeniopsis lanceolata, and Pyropia yezoensis. In Total, 319 thalli of various sizes were collected at six sites from February 2017 to December 2018. An interspecific allometric exponent of 0.28 was found for length-biomass allometry in four sheet form macroalgae, corresponding to a 1/4-power law for primary producers. The relationships between surface area and individual dry weight, as well as between individual fresh weight and individual dry weight, were found to fit significantly using linear regression equations. This explained 94-99 % of individual dry weight, indicating that surface area and individual fresh weight can be used to accurately estimate individual dry weight. We propose the use of this method when experimental processes do not allow individual dry weight to be measured directly, so researchers can save both time and expense.

Changes in Aboveground Biomass and Nutrient Accumulation of the Korean-pine (Pinus koraiensis) Plantation by Stand Age at kangwondo Province (강원도(江原道) 지방(地方) 잣나무 인공림(人工林)의 임령변화(林齡變化)에 따른 지상부(地上部) 현존량(現存量)과 양분축적(養分蓄積))

  • Yi, Myong-Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.276-285
    • /
    • 1998
  • The aboveground biomass and nutrient content (N, P, K, Ca and Mg) of Pinus koraiensis S. et Z., aged 9, 22, 34, 46, 66 years, were measured in the Experiment Forest of Kangwon National University of Kangwondo province. The site index of the stands ranged from 13.5 to 14.2. Allometric equations (logY=alogX+b, where Y, X is ovendry mass and DBH, respectively) relating dry weights of stem, branches and needles to diameter at breast height (DBH) were developed to estimate aboveground tree biomass. Total above ground tree biomass increased with stand age from $21.8t\;ha^{-1}$ in the 9-year-old stand to $130t\;ha^{-1}$ in the 66-Year-old stand. Aboveground biomass was allocated as follows : stem> branch > foliage, except for the 9-year-old stand which had a greater proportion of foliage biomass than branch biomass. As stand age increased, an increasing proportion of annual biomass increment was allocated to stems. The aboveground biomass of shrubs and herbs ranged from 0.4 to $3.9t\;ha^{-1}$ and from 0.05 to $0.6t\;ha^{-1}$, respectively. No relationship was found between aboveground understory biomass and stand age. The mass of woody debris and forest floor varied between 0.59 to $1.54t\;ha^{-1}$ and 6.0 to $21.63t\;ha^{-1}$, respectively. Nutrient accumulation in aboveground tree biomass increased with stand age and was in the order of N > Ca > K > P > Mg. Average rates of nutrients accumulation in biomass were greatest in the early stages of stand development, and less marked as stand aged. The nutrient concentrations in different tree components decreased in the order of needle > branch > stem. There were no detectable trends in nutrient content of the forest floor and mineral soils with stand age. Understory vegetation contributed little to the nutrient pool of these Korean pine ecosystems. Mineral soil contained the Breast proportion of nutrient capital of the various ecosystem compartments.

  • PDF

Development of Vegetation Structure after Forest Fire in the East Coastal Region, Korea (동해안 산불 피해지에서 산불 후 경과 년 수에 따른 식생 구조의 발달)

  • 이규송;정연숙;김석철;신승숙;노찬호;박상덕
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.99-106
    • /
    • 2004
  • We developed the estimation model for the vegetation developmental processes on the severely burned slope areas after forest fire in the east coastal region, Korea. And we calculated the vegetation indices as a useful parameter for the development of land management technique in the burned area and suggested the changes of the vegetation indices after forest fire. In order to estimate the woody standing biomass in the burned area, allometric equations of the 17 woody species regenerated by sprouter were investigated. According to the our results, twenty year after forest fire need for the development to the normal forest formed by 4 stratum structure, tree, sub-tree, shrub and herb layer. The height of top vegetation layer, basal area and standing biomass of woody species show a tendency to increase linearly, and the ground vegetation coverage and litter layer show a tendency to increase logarithmically after forest fire. Among vegetation indices, Ive and Ivcd show a tendency to increase logarithmically, and Hcl and Hcdl show a tendency to increase linearly after forest fire. The spatial variation of the most vegetation factors was observed in the developmental stages less than the first 5 years which were estimated secondary disaster by soil erosion after forest fire. Among vegetation indices, Ivc and Ivcd were the good indices for the representation of the spatial heterogeneity in the earlier developmental stages, and Hcl and Hcdl were the useful indices for the long-term estimation of the vegetation development after forest fire.

Woody Plant Species Composition, Population Structure and Carbon Sequestration Potential of the A. senegal (L.) Willd Woodland Along a Distance Gradient in North-Western Tigray, Ethiopia

  • Birhane, Emiru;Gebreslassie, Hafte;Giday, Kidane;Teweldebirhan, Sarah;Hadgu, Kiros Meles
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.91-112
    • /
    • 2020
  • In Ethiopia, dry land vegetation including the fairly intact lowland and western escarpment woodlands occupy the largest vegetation resource of the country. These forests play a central role in environmental regulation and socio-economic assets, yet they received less scientific attention than the moist forests. This study evaluated the woody plant species composition, population structure and carbon sequestration potential of the A. senegal woodland across three distance gradients from the settlements. A total of 45 sample quadrants were laid along a systematically established nine parallel transect lines to collect vegetation and soil data across distance gradients from settlement. Mature tree dry biomass with DBH>2.5 cm was estimated using allometric equations. A total of 41 woody plant species that belong to 20 families were recorded and A. senegal was the dominant species with 56.4 IVI value. Woody plant species diversity, density and richness were significantly higher in the distant plots compared to the nearest plots to settlement (p<0.05). The cumulative DBH class distribution of all individuals had showed an interrupted inverted J-shape population pattern. There were 19 species without seedlings, 15 species without saplings and 14 species without both seedlings and saplings. A significant above ground carbon (5.3 to 12.7 ton ha-1), root carbon (1.6 to 3.6 ton ha-1), soil organic carbon (35.6 to 44.5 ton ha-1), total carbon stock (42.5 to 60.7 ton ha-1) and total carbon dioxide equivalent (157.7 to 222.8 ton ha-1) was observed consistently with an increasing of distance from settlement (p<0.05). Distance from settlement had significant and positive correlation with species diversity and carbon stock at 0.64⁎⁎ and 0.78⁎⁎. Disturbance intensity may directly influence the variation of species composition, richness and density along the A. senegal woodland. The sustainability of the A. senegal woodland needs urgent protection, conservation and restoration.

A Study of Estimation of Forest Ecosystem Carbon Storage in Gyeryongsan National Park, Korea (계룡산 국립공원 산림생태계의 탄소축적량 산정에 관한 연구)

  • Jang, Ji-Hye;Yi, Joon-Seok;Jeong, Ji-Sun;Song, Tae-Young;Lee, Kyengjae;Suh, Sang-Uk;Lee, Jaeseok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.319-327
    • /
    • 2014
  • Understanding and quantifying of carbon storage in ecosystem is very important factor for predicting change of global carbon cycle under the global climate change. We estimated total ecosystem carbon in Gyeryongsan National Park with naturally well preserved ecosystem in Korea. Vegetation of Gyeryongsan National Park was classified with mainly four communities with Quercus mongolica (1,743.5 ha, 38.0%), Quercus variabilis (1,174.0 ha, 25.6%), Quercus serrata (971.9 ha, 21.2%), Pinus densiflora (695.2 ha, 15.2%). Biomass and soil carbons were calculated from biomass allometric equations based on the DBH and carbon contents of soil and litter collected in quadrat in each community. The tree biomass carbon was in Quercus variabilis ($130.1tCha^{-1}$), Pinus densiflora ($111.1tCha^{-1}$), Quercus mongolica ($76.2tCha^{-1}$), Quercus serrata ($39.0tCha^{-1}$). Soil carbon storage was in Quercus mongolica ($159.7tCha^{-1}$), Quercus serrata ($121.0tCha^{-1}$), Pinus densiflora ($110.5tCha^{-1}$), Quercus variabilis ($90.8tCha^{-1}$). Ecosystem carbon storage was Pinus densiflora ($239.9tCha^{-1}$), Quercus mongolica ($235.9tCha^{-1}$), Quercus variabilis ($226.0tCha^{-1}$), Quercus serrata ($165.9tCha^{-1}$), total amount was $867.7tCha^{-1}$. The area of each vegetation carbon storage was Quercus mongolica ($411,200tCha^{-1}$), Quercus variabilis ($265,300tCha^{-1}$), Pinus densiflora ($166,800tCha^{-1}$), Quercus serrata ($161,200tCha^{-1}$) and the total ecosystem carbon amount estimated $1,045,400tCha^{-1}$ at Gyeryongsan National Park. Theses results indicate that different in naturally well preserved ecosystem.

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

Effects of Tree Density Control on Carbon Dynamics in Young Pinus densiflora stands (소나무 유령림의 임목밀도 조절이 탄소 동태에 미치는 영향)

  • Song, Su-Jin;Jang, Kyoung-Soo;Hwang, In-Chae;An, Ki-Wan;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.275-283
    • /
    • 2016
  • The objective of this study was to examine carbon dynamics with biomass, soil $CO_2$ efflux, litter and root decomposition after tree density control in young Pinus densiflora stands. The stands were established with 50% thinning, clear-cut, and control stands with three pseudo-replicated plots and a bare soil plot in 8-year-old Pinus densiflora nursery field. Monthly measurements were conducted from March 2012 to February 2014 and aboveground biomass and coarse-roots were estimated by derived allometric equations. Average diameter growth at root collar in control and thinned was 0.89 cm and 1.48 cm per year, respectively, and the diameter growth of control stand was significantly higher than that of thinned stands (p<0.05). Total biomass was estimated to 5.17, $4.85kg\;C\;m^{-2}$ per year in control and thinned, respectively. Annual soil $CO_2$ efflux in control, thinned, clear cut, and bare soil was 3.71, 3.90, 4.17, $4.56kg\;CO_2\;m^{-2}\;yr^{-1}$, respectively and removing trees significantly increased soil $CO_2$ efflux (p<0.05). Net Ecosystem Production (NEP) was 1.57, 1.36, -0.67, $-1.25kg\;C\;m^{-2}\;yr^{-1}$ in control, thinned, clear cut and bare soil in the young Pinus densiflora stands. NEP was significantly decreased by removing trees. Thinning increased diameter at root collar and carbon of individual tree and recovered 86% of carbon removed by thinning after one-year. In addition, soil $CO_2$ efflux increased and NEP increased by thinning. Results of this study, tree density control such as thinning increased the carbon storage and growth of the young Pinus densiflora stands.

Carbon Stocks of Tree, Forest Floor, and Mineral Soil in Cryptomeria japonica and Chamaecyparis obtusa Stands (삼나무와 편백 임분의 임목, 임상, 토양의 탄소량 비교)

  • Kim, Choonsig;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Bae, Eun Ji;Lee, Kwang-Soo;Son, Yeong Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.169-178
    • /
    • 2020
  • This study aimed to compare the organic carbon stocks of Cryptomeria japonica and Chamaecyparis obtusa stands established under a similar-site environmental condition in South Korea. C. japonica and C. obtusa stands adjacent to each other from 13 representative regions were chosen to evaluate the carbon stocks of tree biomass, forest floor, and mineral soils. Mean stand ages were 45 years for C. japonica and 43 years for C. obtusa, respectively. Tree density was significantly lower in C. japonica (989 tree ha-1) than in C. obtusa (1,223 tree ha-1) stands, whereas diameter at breast height and dominant tree height values were significantly higher in C. japonica (27.4 cm and 20.4 m, respectively), compared with C. obtusa (23.9 cm and 17.9 m, respectively) stands. The total carbon stocks of tree biomass were linearly related with stand basal area (C. japonica: r2 = 0.82; C. obtusa: r2= 0.92; P< 0.05), whereas stand density and site index were not correlated with the carbon stocks of tree biomass (P > 0.05). The carbon stocks of aboveground tree biomass were significantly higher in C. obtusa (117.7 Mg C ha-1), compared with C. japonica (95.5 Mg C ha-1) stands, whereas carbon concentration and stocks of the forest floor and mineral soil layers were insignificantly different between the C. japonica and C. obtusa stands. The results indicated that trees in C. obtusa stands sequestrated more carbon dioxide, compared with C. japonica stands, whereas carbon stocks in the forest floor and mineral soil layers were unaffected by stand development processes of the different tree species.