• Title/Summary/Keyword: Biology I

Search Result 3,159, Processing Time 0.026 seconds

Characterization of Plasmodium berghei Homologues of T-cell Immunomodulatory Protein as a New Potential Candidate for Protecting against Experimental Cerebral Malaria

  • Cui, Ai;Li, Yucen;Zhou, Xia;Wang, Lin;Luo, Enjie
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.101-115
    • /
    • 2019
  • The pathogenesis of cerebral malaria is biologically complex and involves multi-factorial mechanisms such as microvascular congestion, immunopathology by the pro-inflammatory cytokine and endothelial dysfunction. Recent data have suggested that a pleiotropic T-cell immunomodulatory protein (TIP) could effectively mediate inflammatory cytokines of mammalian immune response against acute graft-versus-host disease in animal models. In this study, we identified a conserved homologue of TIP in Plasmodium berghei (PbTIP) as a membrane protein in Plasmodium asexual stage. Compared with PBS control group, the pathology of experimental cerebral malaria (ECM) in rPbTIP intravenous injection (i.v.) group was alleviated by the downregulation of pro-inflammatory responses, and rPbTIP i.v. group elicited an expansion of regulatory T-cell response. Therefore, rPbTIP i.v. group displayed less severe brain pathology and feverish mice in rPbTIP i.v. group died from ECM. This study suggested that PbTIP may be a novel promising target to alleviate the severity of ECM.

Guide to Learning Systems Biology for Korean Medicine Researchers (한의학 연구자를 위한 시스템 생물학 학습 가이드)

  • Kim, Chang-Eop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.412-418
    • /
    • 2016
  • The emergence of systems biology in the 21st century is changing the paradigm of biomedical research. Whereas the reductionist approaches focus on components rather than time or contexts, systems biology focus more on interrelationships, dynamics, and contexts. The key ideas of the systems biology shares much with the philosophy of Korean Medicine(KM) and therefore, the paradigm shift is shedding light on understanding the mechanism of action of KM at system level. In this article, I provide a guide to learning systems biology for KM researchers using online learning resources. Thanks to the recent development of MOOC(massive open online courses) and other online learning platforms, learners can access to plenty of high-quality resources from top-tier universities in the world. I expect this guide help researchers to employ systems biology methods into their KM researches, and will lead to the development of future curricula for training "bi-lingual" experts, KM and computational approaches.

DdeI Polymorphism in Coding Region of Goat POU1F1 Gene and Its Association with Production Traits

  • Lan, X.Y.;Pan, C.Y.;Chen, H.;Lei, C.Z.;Hua, L.S.;Yang, X.B.;Qiu, G.Y.;Zhang, R.F.;Lun, Y.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1342-1348
    • /
    • 2007
  • POU1F1 is a positive regulator for GH, PRL and TSH${\beta}$ and its mutations associate with production traits in ruminant animals. We described a DdeI PCR-RFLP method for detecting a silent allele in the goat POU1F1 gene: TCT (241Ser)>TCG (241Ser). Frequencies of $D_1$ allele varied from 0.600 to 1.000 in Chinese 801 goats. Significant associations of DdeI polymorphism with production traits were found in milk yield (*p<0.05), litter size (*p<0.05) and one-year-old weight (*p<0.05) between different genotypes. Individuals with genotype $D_1D_1$ had a superior performances when compared to those with genotype $D_1D_2$ (*p<0.05). Hence, the POU1F1 gene was suggested to the potential candidate gene for superior milk performance, reproduction trait and weight trait. Genotype $D_1D_1$, characterized by a DdeI PCR-RFLP detection, was recommended to geneticists and breeders as a molecular marker for better performance in the goat industry.

Dengue Virus 2 NS2B Targets MAVS and IKKε to Evade the Antiviral Innate Immune Response

  • Ying Nie;Dongqing Deng;Lumin Mou;Qizhou Long;Jinzhi Chen;Jiahong Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.600-606
    • /
    • 2023
  • Dengue virus (DENV) is a widespread arbovirus. To efficiently establish infection, DENV evolves multiple strategies to hijack the host innate immune response. Herein, we examined the inhibitory effects of DENV serotype 2 (DENV2) nonstructural proteins on RIG-I-directed antiviral immune response. We found that DENV2 NS2A, NS2B, NS4A, and NS4B significantly inhibited RIG-I-mediated IFN-β promoter activation. The roles of NS2B in RIG-I-directed antiviral immune response are unknown. Our study further showed that NS2B could dose-dependently suppress RIG-I/MAVS-induced activation of IFN-β promoter. Consistently, NS2B significantly decreased RIG-I- and MAVS-induced transcription of IFNB1, ISG15, and ISG56. Mechanistically, NS2B was found to interact with MAVS and IKKε to impair RIG-I-directed antiviral response. Our findings demonstrated a previously uncharacterized function of NS2B in RIG-I-mediated antiviral response, making it a promising drug target for anti-DENV treatments.

Properties of $Cl^-$ Binding Site in Oxygen-Evolving Complex of Photosystem II Studied by FTIR Spectroscopy

  • Koji Hasegawa;Kim, Yukihiro ura;Asako Ishii;Jun Minagawa;Ono, Taka-aki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.376-378
    • /
    • 2002
  • Role of cl$^{[-10]}$ in photosynthetic oxygen-evolving complex was studied by light-induced Fourier transform infrared (FTIR) spectroscopy. cl$^{[-10]}$ depletion resulted in the suppression of amide I and amide II IR modes upon S$_1$ to S$_2$ transition. Br$^{[-10]}$ , 1$^{[-10]}$ and N0$_3$$^{[-10]}$ substituted FTIR difference spectra were very similar to that in cl$^{[-10]}$ reconstitution. F$^{[-10]}$ and $CH_3$COO$^{[-10]}$ substituted spectra were largely distorted. We succeeded in detecting the structural change of N0$_3$ $^{[-10]}$ in the cl$^{[-10]}$ site upon the S$_1$ to S$_2$ transition from $^{14}$ N0$_3$$^{[-10]}$ /$^{15}$ N0$_3$$^{[-10]}$ difference spectrum.

  • PDF

Evaluation of Immunoproteasome-Specific Proteolytic Activity Using Fluorogenic Peptide Substrates

  • Sumin Kim;Seo Hyeong Park;Won Hoon Choi;Min Jae Lee
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.28.1-28.11
    • /
    • 2022
  • The 26S proteasome irreversibly hydrolyzes polyubiquitylated substrates to maintain protein homeostasis; it also regulates immune responses by generating antigenic peptides. An alternative form of the 26S proteasome is the immunoproteasome, which contains substituted catalytic subunits (β1i/PSMB9, β2i/PSMB10, and β5i/PSMB8) instead of constitutively expressed counterparts (β1/PSMB6, β2/PSMB7, and β5/PSMB5). The immunoproteasome expands the peptide repertoire presented on MHC class I molecules. However, how its activity changes in this context is largely elusive, possibly due to the lack of a standardized methodology to evaluate its specific activity. Here, we describe an assay protocol that measures the immunoproteasome activity of whole-cell lysates using commercially available fluorogenic peptide substrates. Our results showed that the most accurate assessment of immunoproteasome activity could be achieved by combining β5i-targeting substrate Ac-ANW-AMC and immunoproteasome inhibitor ONX-0914. This simple and reliable protocol may contribute to future studies of immunoproteasomes and their pathophysiological roles during viral infection, inflammation, and tumorigenesis.

Ground-State Conditions Promote Robust Prdm14 Reactivation and Maintain an Active Dlk1-Dio3 Region during Reprogramming

  • Habib, Omer;Habib, Gizem;Moon, Sung-Hwan;Hong, Ki-Sung;Do, Jeong Tae;Choi, Youngsok;Chang, Sung Woon;Chung, Hyung-Min
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.31-35
    • /
    • 2014
  • Induced pluripotent stem cells (iPSCs) are capable of unlimited self-renewal and can give rise to all three germ layers, thereby providing a new platform with which to study mammalian development and epigenetic reprogramming. However, iPSC generation may result in subtle epigenetic variations, such as the aberrant methylation of the Dlk1-Dio3 locus, among the clones, and this heterogeneity constitutes a major drawback to harnessing the full potential of iPSCs. Vitamin C has recently emerged as a safeguard to ensure the normal imprinting of the Dlk1-Dio3 locus during reprogramming. Here, we show that vitamin C exerts its effect in a manner that is independent of the reprogramming kinetics. Moreover, we demonstrate that reprogramming cells under 2i conditions leads to the early upregulation of Prdm14, which in turn results in a highly homogeneous population of authentic pluripotent colonies and prevents the abnormal silencing of the Dlk1-Dio3 locus.