• 제목/요약/키워드: Biologically inspired algorithms

검색결과 3건 처리시간 0.016초

Biologically Inspired Node Scheduling Control for Wireless Sensor Networks

  • Byun, Heejung;Son, Sugook;Yang, Soomi
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.506-516
    • /
    • 2015
  • Wireless sensor networks (WSNs) are generally comprised of densely deployed sensor nodes, which results in highly redundant sensor data transmissions and energy waste. Since the sensor nodes depend on batteries for energy, previous studies have focused on designing energy-efficient medium access control (MAC) protocols to extend the network lifetime. However, the energy-efficient protocols induce an extra end-to-end delay, and therefore recent increase in focus on WSNs has led to timely and reliable communication protocols for mission-critical applications. In this paper, we propose an energy efficient and delay guaranteeing node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique.With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

FPGA Implementation of an Artificial Intelligence Signal Recognition System

  • Rana, Amrita;Kim, Kyung Ki
    • 센서학회지
    • /
    • 제31권1호
    • /
    • pp.16-23
    • /
    • 2022
  • Cardiac disease is the most common cause of death worldwide. Therefore, detection and classification of electrocardiogram (ECG) signals are crucial to extend life expectancy. In this study, we aimed to implement an artificial intelligence signal recognition system in field programmable gate array (FPGA), which can recognize patterns of bio-signals such as ECG in edge devices that require batteries. Despite the increment in classification accuracy, deep learning models require exorbitant computational resources and power, which makes the mapping of deep neural networks slow and implementation on wearable devices challenging. To overcome these limitations, spiking neural networks (SNNs) have been applied. SNNs are biologically inspired, event-driven neural networks that compute and transfer information using discrete spikes, which require fewer operations and less complex hardware resources. Thus, they are more energy-efficient compared to other artificial neural networks algorithms.

Prototype-based Classifier with Feature Selection and Its Design with Particle Swarm Optimization: Analysis and Comparative Studies

  • Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.245-254
    • /
    • 2012
  • In this study, we introduce a prototype-based classifier with feature selection that dwells upon the usage of a biologically inspired optimization technique of Particle Swarm Optimization (PSO). The design comprises two main phases. In the first phase, PSO selects P % of patterns to be treated as prototypes of c classes. During the second phase, the PSO is instrumental in the formation of a core set of features that constitute a collection of the most meaningful and highly discriminative coordinates of the original feature space. The proposed scheme of feature selection is developed in the wrapper mode with the performance evaluated with the aid of the nearest prototype classifier. The study offers a complete algorithmic framework and demonstrates the effectiveness (quality of solution) and efficiency (computing cost) of the approach when applied to a collection of selected data sets. We also include a comparative study which involves the usage of genetic algorithms (GAs). Numerical experiments show that a suitable selection of prototypes and a substantial reduction of the feature space could be accomplished and the classifier formed in this manner becomes characterized by low classification error. In addition, the advantage of the PSO is quantified in detail by running a number of experiments using Machine Learning datasets.