• 제목/요약/키워드: Biological wastewater treatment

검색결과 623건 처리시간 0.022초

독성산업폐수의 생물학적 처리 (Biological Treatability of Toxic Industrial Wastewater)

  • 원성연;박승국;정근욱
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.172-179
    • /
    • 1999
  • In this research, biological treatability test was conduced using seawater flocculated tannery wastewater by fixed biofilm reactor. During one cycle, the removal efficiency of organic corbon obtained with fixed biofilm process for treating tannery wastewater was considerably greater than that with activated sludge process. As the hydraulic retention time increased form 0.5day to 4day, removal efficiency of organic carbon was increased from 72% to 87.3%. Attached biomass in media increased with influent organic loading up to 29g MLSS/L, that could reduce the specific organic loading rate. The continual measurement of attached biomass was possible for the operation of the biofilm reactor. Equal and low nitrication rates were observed in both suspended growth activated sludge process and fixed biofilm process, despite commercial nitrifier was seeded. Through the process of treating the tannery wastewater, EC50 values which is measured by the use of Ceriopdaphnia dubia, were decreased to the extent of 50% after treatment of seawater flocculation and of 83% after biological treatment, respectively, compared to those of the untreated wastewater.

  • PDF

Biological Removal of EG from Weight Loss Treatment Wastewater & Complex Dyeing Process Wastewater

  • 이현욱;임동준
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.505-508
    • /
    • 2001
  • An microorganism able to degrade ethylene glycol(EG) was developed. Using this microorganism, biological treatment of ethylene glycol was studied in Erlenmeyer flasks and a laboratory scale stirred loop bioreactor. The removal efficiencies of ethylene glycol from synthetic wastewater were 91.6% ${\sim}$ 97.7% at $30^{\circ}C$ ${\sim}$ $40^{\circ}C$, and 96.3% ${\sim}$ 97.9% at initial pH 9 ${\sim}$ 11 respectively. Also the removal efficiencies of ethylene glycol were found to be more then 92% at initial ethylene glycol concentration of 300mg/L ${\sim}$ I400mg/L. In treatment of weight loss treatment wastewater using Erlenmeyer flasks, the removal efficiencies of ethylene glycol were 79.6%. 82.5%. 77.6%. and 71.3% at initial pH 9. 10. 11. and 12.4 after 11 days of reaction. Moreover in treatment of complex dyeing process wastewater. the residual ethylene glycol was not detected at the initial pH 10.0 and pH 11.3 after 4 days of reaction. When stirred loop bioreactor was used for removing ethylene glycol, the residual ethylene glycol was not detected after 108 hrs and 60 hrs of reaction in batch treatment of weight loss treatment wastewater and complex dyeing process wastewater.

  • PDF

FAULT DETECTION, MONITORING AND DIAGNOSIS OF SEQUENCING BATCH REACTOR FOR INTEGRATED WASTEWATER TREATMENT MANAGEMENT SYSTEM

  • Yoo, Chang-Kyoo;Vanrolleghem, Peter A.;Lee, In-Beum
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.63-76
    • /
    • 2006
  • Multivariate analysis and batch monitoring on a pilot-scale sequencing batch reactor (SBR) are described for integrated wastewater treatment management system, where a batchwise multiway independent component analysis method (MICA) are used to extract meaningful hidden information from non-Gaussian wastewater treatment data. Three-way batch data of SBR are unfolded batch-wisely, and then a non-Gaussian multivariate monitoring method is used to capture the non-Gaussian characteristics of normal batches in biological wastewater treatment plant. It is successfully applied to an 80L SBR for biological wastewater treatment, which is characterized by a variety of error sources with non-Gaussian characteristics. The batchwise multivariate monitoring results of a pilot-scale SBR for integrated wastewater treatment management system showed more powerful monitoring performance on a WWTP application than the conventional method since it can extract non-Gaussian source signals which are independent and cross-correlation of variables.

Feasibility of Reclaimed Wastewater and Waste Nutrient Solution for Crop Production in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Awad, Yasser M.;Ok, Yong-Sik
    • 한국환경농학회지
    • /
    • 제30권2호
    • /
    • pp.118-124
    • /
    • 2011
  • BACKGROUND: Development of water recycle technologies is important for human health and sustainable agriculture. However, few studies have been conducted to examine the purification methods or the water quality of reclaimed wastewater in Korea. METHODS AND RESULTS: In this study, the different wastewaters including reclaimed wastewater and waste nutrient solution (NS) were evaluated. The changes of water quality in reclaimed wastewater and NS were determined using ultraviolet (UV) treatment and sand filtration with charcoal. Our results showed that one of the most critical limitations of reusing wastewater was the presence of harmful pathogens that possibly cause human health risks. CONCLUSION(s): This study suggests that the application of UV treatment or combined with sand filtration on reclaimed wastewater and waste NS effectively removes the total coliform bacteria below the harmful or acceptable level. For future studies, a long-term field monitoring after applying reclaimed wastewater or NS is needed.

전기분해에 의한 염색폐수의 COD 제거 특성 (Characteristics of COD Removal in the Electrolytic Treatment of Dyeing-Wastewater)

  • 강광남;윤용수
    • 환경위생공학
    • /
    • 제13권2호
    • /
    • pp.139-146
    • /
    • 1998
  • The characteristics of color and COD removal for dyeing-wastewater using electrochemical reaction were investigated. >From the result, the removal efficiency of color and COD were increased with increase of temperature, decrease of electrode distance, increase of electrolyte concentration and increase of potential and these were obtained above 99%, above 75% within 30 min, individually. Cause of higher COD removal efficiency, it is more suitable that dyeing-wastewater is treated by electrolytic treatment prior to biological treatment. It is concluded that the electrolytic treatment of dyeing-wastewater can be used as the effective and economical method in practical treatment.

  • PDF

${\cdot}$ 폐수처리장에서의 생물학적 질소제거 프로그램 검증 (Verification of biological nitrogen removal program in sewage or wastewater treatment plants)

  • 김희선;이병대
    • 한국응용과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.332-338
    • /
    • 2007
  • Based on the experiment results of laboratory scale modified anoxic-oxic process for leachate treatment, biological nitrogen removal program was verified in terms of SS, COD, and TN concentration. These measured water qualities concentration could be predicted by biological nitrogen removal program with $R^2$ of 0.994, 0.987, 0.990, respectively. No error was occurred between water qualities concentration and quite wide range of water qualities concentration (i.e., 50-4200 mg/L) during the modelling. Each unit and final effluent of simulated concentration was kept good relationship with that of measured concentration therefore this biological nitrogen removal program for sewage or wastewater treatment plants has good reliance.

펄프.제지산업(製紙産業) 폐수(廢水)의 특성(特性)과 생물학적(生物學的) 처리기술(處理技術) (Characteristics of Wastewater from the Pulp.Paper Industry and its Biological Treatment Technologies)

  • 안지환;임미희
    • 자원리싸이클링
    • /
    • 제18권2호
    • /
    • pp.16-29
    • /
    • 2009
  • 본고는 펄프 제지산업 폐수에 함유된 오염물질들의 특성과 생물학적 처리기술들에 대해 설명한다. 펄프 제지산업 폐수는 고농도의 생화학적 산소요구량 (BOD)과 화학적 산소요구량 (COD)을 포함하고 높은 독성을 보이며 강한 흑갈색을 띠는 것이 특징이다. 특히, 펄프의 표백공정에서 리그닌의 염소화에 의해 다이옥신, 퓨란과 같은 독성의 유기염소화합물이 형성된다는 것이 알려져있다. 이에 따라 최근 펄프 제지산업은 기존의 표백처리를 무염소공정(TCF)으로 대체하고 있다. 펄프 제지산업 폐수처리에 사용되는 모든 생물학적 기술들은 폐수와 박테리아의 접촉 메커니즘에 기반을 두고 있는데, 이것은 박테리아가 폐수 내 유기물질을 먹이로 이용하여 세포로 전환함으로써 폐수 내 BOD농도를 감소시키는 것이다. 펄프 제지산업 폐수의 생물학적 처리에서 호기성 처리와 혐기성 처리 모두 효과적인 것으로 밝혀졌다. 뿐만 아니라, 최근 곰팡이류를 이용한 생물학적 처리, 생물-응집-여과기법을 혼용한 처리 등도 폐수처리분야에 새롭게 적용되었다. 이러한 기술들로 처리된 폐수를 펄프 제지공정에 재활용함으로써 제조공정의 물소비량을 상당히 감소시킬 수 있다.

생물학적 호기성필터를 이용한 소규모 하수처리시스템에 관한 연구 (Study on a Small-scale Wastewater Treatment System using Biological Aerated Filter)

  • 박찬규;조은영;김영희;박성진
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.41-45
    • /
    • 2014
  • The biological aerated filter (BAF) reactor is regarded as an effective biological wastewater treatment method. It can remove pollutants by carrier filtration and biodegradation. Due to its advantages, which include high biomass retention, tolerance to toxicity, excellent removal efficiency, and slurry separation, BAF has been widely used to remove COD, $NH_4{^+}-N$, phosphorus, and other harmful organic substances. In this study, the BAF reactor was used to remove organic contaminants of domestic wastewater of Korea at both the benchand pilot-scale. The main objectives of this study are to: (i) investigate the removal efficiency of organic contaminants (ex. COD, nitrate, phosphorus) in BAF reactors at both scales; (ii) characterize the small-scale wastewater treatment plant using the BAF reactor. The concentration of COD in the influent increased from 69 to 246 mg/L. During the operation period, the final effluent concentration of COD remained maximum 4.0 mg/L, and the average removal efficiency was above 88%. The present study investigated the removal efficiencies of COD, TN, TP and $NH_4{^+}-N$ from smelting wastewater by BAF system. When treating wastewater in both bench and pilot-scale reactors, the BAF worked well.

Automation Development in Water and Wastewater Systems

  • Olsson, Gustaf
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.197-200
    • /
    • 2007
  • Advanced control is getting increasingly demanded in water and wastewater treatment systems. Various case studies have shown significant savings in operating costs, including energy costs, and remarkably short payback times. It has been demonstrated that instrumentation, control and automation (ICA) may increase the capacity of biological nutrient removing wastewater treatment plants by 10-30% today. With further understanding and exploitation of the mechanisms involved in biological nutrient removal the improvements due to ICA may reach another 20-50% of the total system investments within the next 10-20 years. Disturbances are the reason for control of any system. In a wastewater treatment system they are mostly related to the load variations, but many disturbances are created also within the plant. In water supply systems some of the major disturbances are related the customer demand as well as to leakages or bursts in the pipelines or the distribution networks. Hardly any system operates in steady state but is more or less in a transient state all the time. Water and energy are closely related. The role of energy in water and wastewater operations is discussed. With increasing energy costs and the threatening climate changes this issue will grow in importance.

미세조류를 이용한 질소제거 장치의 크기 (Size Estimation of Microalgal System for Nitrogen Removal)

  • 김한욱;이우성;이철균
    • KSBB Journal
    • /
    • 제19권3호
    • /
    • pp.236-240
    • /
    • 2004
  • Batch experiment에서 다양한 질소 농도에서 구해진 질소제거 속도와 비 생장속도 등의 데이터를 토대로 4.6일의 체류시간을 갖는 2단 처리 장치를 설계하였다. 그리고 continuous experiments에서는 3.5일의 체류시간을 갖는 2단의 처리 장치를 설계하였다. 두 가지 값에 차이는 있지만 실제 현장에서 폐수 처리 장치를 설계할 때 충분한 자료가 되리라고 판단한다. 따라서 위의 결과를 토대로 기존 시스템에 미세조류 시스템을 부가한다면 기존공정의 단점인 잉여질소 제거 장치로서 충분히 역할을 수행해 배출 기준치를 만족시키는 안전한 폐수처리장치가 되리라고 판단한다.