• Title/Summary/Keyword: Biological science

Search Result 14,673, Processing Time 0.045 seconds

Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages

  • Kim, Ga-Young;Jeong, Hana;Yoon, Hye-Young;Yoo, Hye-Min;Lee, Jae Young;Park, Seok Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.640-645
    • /
    • 2020
  • Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS signal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.

Pathophysiological Implication of Ganglioside GM3 in Early Mouse Embryonic Development through Apoptosis

  • Ju Eun-Jin;Kwak Dong-Hoon;Lee Dae-Hoon;Kim Sung-Min;Kim Ji-Su;Kim Sun-Mi;Choi Han-Gil;Jung Kyu-Yong;Lee Seo-ul;Do Su-Il;Park Young-Il;Choo Young-Kug
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1057-1064
    • /
    • 2005
  • Apoptosis may occur in early embryos where the execution of essential developmental events has failed, and gangliosides, sialic acid-conjugated glycosphingolipids, are proposed to regulate cell differentiation and growth. To evaluate the regulatory roles of ganglioside GM3 in early embryonic development, this study examined its expressional patterns in apoptotic cells during early embryonic development in mice. Pre-implanted embryos were obtained by in vitro fertilization, which were treated at the 4-cell stage with three the apoptosis inducers, actinomycin D, camptothecin and cycloheximide, for 15 h. All three inducers significantly increased the percentage of apoptotic cells, as measured using a TUNEL method, but remarkably reduced the total cell numbers. The numbers of morula and blastocyst stages were significantly decreased by treatment of the embryos with the three apoptosis inducers compared with the control, with a similar result also observed in the number of blastomeres. Staining of early embryos with Hoechst 33342 revealed a significant percentage of apoptotic nuclei. Prominent immunofluo­rescence microscopy revealed a significant difference in the ganglioside GM3 expression in apoptotic embryos compared with the control, and RT-PCR also demonstrated a dramatic increase in ganglioside GM3 synthase mRNA in the apoptotic embryos. These results suggest that ganglioside GM3 may be pathophysiologically implicated in the regulation of early embryonic development through an apoptotic mechanism.

Evaluation of the applicability of ChatGPT in biological nursing science education (ChatGPT의 기초간호학교육 활용 가능성 평가)

  • Sunmi Kim;Jihun Kim;Myung Jin Choi;Seok Hee Jeong
    • Journal of Korean Biological Nursing Science
    • /
    • v.25 no.3
    • /
    • pp.183-204
    • /
    • 2023
  • Purpose: The purpose of this study was to evaluate the applicability of ChatGPT in biological nursing science education. Methods: This study was conducted by entering questions about the field of biological nursing science into ChatGPT versions GPT-3.5 and GPT-4 and evaluating the answers. Three questions each related to microbiology and pharmacology were entered, and the generated content was analyzed to determine its applicability to the field of biological nursing science. The questions were of a level that could be presented to nursing students as written test questions. Results: The answers generated in English had 100.0% accuracy in both GPT-3.5 and GPT-4. For the sentences generated in Korean, the accuracy rate of GPT-3.5 was 62.7%, and that of GPT-4 was 100.0%. The total number of Korean sentences in GPT-3.5 was 51, while the total number of Korean sentences in GPT-4 was 68. Likewise, the total number of English sentences in GPT-3.5 was 70, while the total number of English sentences in GPT-4 was 75. This showed that even for the same Korean or English question, GPT-4 tended to be more detailed than GPT-3.5. Conclusion: This study confirmed the advantages of ChatGPT as a tool to improve understanding of various complex concepts in the field of biological nursing science. However, as the answers were based on data collected up to 2021, a guideline reflecting the most up-to-date information is needed. Further research is needed to develop a reliable and valid scale to evaluate ChatGPT's responses.

Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability

  • Dongkeun Park;Youngim Yu;Ji-hyung Kim;Jongbin Lee;Jongmin Park;Kido Hong;Jeong-Kon Seo;Chunghun Lim;Kyung-Tai Min
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.374-386
    • /
    • 2023
  • Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.