• Title/Summary/Keyword: Biological remediation

Search Result 109, Processing Time 0.028 seconds

A Study on the Application of Enhanced Phytoremediation with Plant Growth Promoting Rhizobacteria for Zn Contaminated Rice Paddy Soil (식물성장근권 미생물 적용에 의한 Zn 오염 논토양 식물상정화증진기법 적용에 관한 연구)

  • Kim, Tae-Sung;Choi, Sang-Il;Yang, Jae-Kyu;Lee, In-Sook;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.15-26
    • /
    • 2010
  • The contaminated soils near abandoned mine area can threaten human's health and natural ecosystems through multiple pathways. Remediation of contaminated soil using physicochemical technologies are expensive and destructive of soil environments. On the other hand, environmentally friendly approach that maximize biological remediation, that is, phytoremediation, attracts attention as a low carbon green growth technology. This research is a field demonstration study, focused on the enhanced phytoremediation by bioaugmenting PGPR(Plant Growth Promoting Rhizobacteria)that is helpful on the growth of and heavy metal removal by Echinochloa frumentacea, at a Zn contaminated paddy soil near SamBo mine at Hwasung, Kyunggi. The results showed that the zinc removal by the plant with PSM(Phosphate Solubilizing Bacteria), a kind of PGPR, was three times higher than that by the control. The results are valuable as it is a result from the field-scale technology demonstration. The results also implies that application of PGPR can enhance heavy metal removal from contaminated soil in full scale phytoremediation using Echinochloa frumentacea.

A METHODOLOGY TO EVALUATE THE EFFECTIVENESS OF REGIONAL SCALE FOR NON-POINT SOURCE LOADS

  • Lee, Ju-Young;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.194-200
    • /
    • 2006
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program, projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in $kg/km^2/yr$ of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV. Especially, farmers in Cameron County consume a lot of fertilizer and pesticide to improve crop yield net profit. Then, this region can be created as larger nonpoint source area for nutrients and the intensity of runoff by excess irrigation water. And many sediment and used irrigation water with including high nutrients can be discharged into Rio Grade River.

Direct-Current Based Remedial Technologies for Contaminated Soils and Groundwaters

  • Lee, Suk-Young;Lee, Chae-Young;Yoon, Jun-Ki;Kim, Kil-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.3-6
    • /
    • 2002
  • Electron transfer is the major natural process governing the behavior of contaminants in soils and groundwaters. Biological degradation of contaminants, i.e., microbial transformation of hazardous compounds, is a well known irreversible electron transfer process. Although it is not well defined as a separate process, abiotic electron-transfer is also an important process for mobilizing/demobilizing inorganic contaminants in soils and groundwaters. Therefore, numerous remedial technologies have been developed on the basis of electron transfer concept. Among them,

  • PDF

The preliminary batch study for evaluating biobarrier application on sequential degradation of TCE products

  • 이재선;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.454-457
    • /
    • 2003
  • A new approach for groundwater treatment combines a permeable Fe(0) barrier to breakdown higher chlorinated solvents like PCE and TCE with a downgradient aerobic biological treatment system to biotransform less chlorinated solvents, such as DCE and vinyl chloride (VC). The expected bacterial performance downgradient of an Fe(0) barrier was evaluated through laboratory batch experiments with a toluene-degrading mixed culture that cometabolically transforms cis-1,2-DCE and VC. The amount of cis-1,2-DCE (initially at 2,000 ppb) and VC (initially at 2,000 ppb) transformed was controlled by the initial toluene (20,000 ppb) concentration. VC was removed much more effectively than Cis-1,2-DCE, and a higher toluene concentration in comparison to the co-substrate concentrations was needed for complete co-substrate removal. Overall, the coupling of an Fe(0) barrier and subsequent biodegradation appears feasible for remediation of complex mixtures of chlorinated solvents and petroleum hydrocarbons in groundwater

  • PDF

디젤오염토양복원을 위한 고온공기 주입/추출 공정의 토양 파일 공법에의 적용 연구

  • 박민호;박기호;홍승모;고석오
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.63-67
    • /
    • 2004
  • A field pilot study on remediation of diesel-contaminated soil by hot air injection/extraction process constructing soil piling system was conducted to evaluate the effects of hot air on the removal of diesel and each constituent. After the heating process of 2 months, the equilibrium temperature of soil reached to 10$0^{\circ}C$ and soil TPH concentration was reduced to about 72% against the initial concentration. Additional extraction process of 2 months induced the continuous extraction of residual diesel and the increment of microbial activity, which made soil TPH concentration reduced to 95%. In addition biological removal of non volatile constituents in diesel was verified indirectly and the removal pattern of each DRO(diesel range organic) as soil temperature was explained.

  • PDF

Electrochemical Control of Metabolic Flux of Weissella kimchii sk10: Neutral Red Immobilized in Cytoplasmic Membrane as Electron Channel

  • PARK, SUN-MI;KANG, HYE-SUN;PARK, DAE-WON;PARK, DOO-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.80-85
    • /
    • 2005
  • Electrochemical control of the metabolic flux of W. kimchii sk10 on glucose and pyruvate was studied. The growing cell of W. kimchii sk10 produced 87.4 mM lactate, 69.3 mM ethanol, and 4.9mM lactate from 83.1mM glucose under oxidation condition of the anode compartment, but 98.9 mM lactate, 84.3mM ethanol, and 0.2 mM acetate were produced from 90.8 mM glucose under reduction condition of the cathode compartment for 24 h, respectively. The resting cell of W. kimchii sk10 produced 15.9 mM lactate and 15.2 mM acetate from 32.1 mM pyruvate under oxidation condition of the anode compartment, and 71.3 mM lactate and 3.8 mM acetate from 79.8mM pyruvate under reduction condition of the cathode compartment. The redox balance (NADH/$NAD^+$) of metabolites electrochemically produced from pyruvate was 1.05 and 18.76 under oxidation and reduction conditions, respectively. On the basis of these results, we suggest that the neutral red (NR) immobilized in bacterial membrane can function as an electron channel for the electron transfer between electrode and cytoplasm without dissipation of membrane potential, and that the bacterial fermentation of W. kimchii sk10 can be shifted to oxidized or reduced pathways by the electrochemical oxidation or reduction, respectively.

Ecological health assessment of Mae Kha Canal, Chiang Mai Province, Thailand in 2023

  • Onalenna Manene;Nick Deadman;Chotiwut Techakijvej;Songyot Kullasoot;Pitak Sapewisut;Nattawut Sareein;Chitchol Phalaraksh
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.110-119
    • /
    • 2024
  • Background: The Mae Kha Canal is one of Chiang Mai's most important waterways. It supports local agriculture, irrigation, and transportation as well as provides stormwater drainage to prevent floods. Due to the unregulated rapid urbanization of the city and lack of efficient waste and wastewater management systems over the past few decades, the canal has become heavily polluted. This study aimed to evaluate the water quality of Mae Kha canal through assessment of the physico-chemical water quality and coliform bacteria. Moreover, benthic macroinvertebrates were samples and assessed using the Biological Monitoring Working Party (BMWPThai) and Average Score Per Taxon (ASPTThai) as biological indices. Results: The physico-chemical showed low dissolved oxygen levels, high levels of ammonia and phosphates, and elevated levels of biochemical oxygen demand, indicating that the water quality had significantly deteriorated. The canal was found to be heavily polluted, with most sites falling into the polluted to very heavily polluted. Coliform bacteria analysis revealed alarmingly high levels of total coliform bacteria and fecal coliform bacteria in the canal. The BMWPThai and ASPTThai scores indicated poor to very poor water quality. Conclusions: The physico-chemical and coliform bacteria indicated that the water quality of the Mae Kha canal had significantly deteriorated. The biological indices also indicated the poor to very poor water quality. This study underscores the urgent need for comprehensive remediation efforts, emphasizing strategic planning, investment, and community engagement to revive the canal's ecological health and water quality.

A Biological Complex Soil Treatment Process Using Selected Soil Bacterial Strains (현장 미생물을 이용한 생물학적 복합토양정화공정에 관한 연구)

  • Cha, Minwhan;Lee, Hanuk;Park, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.5-13
    • /
    • 2010
  • The research is intended to develop and verify a biological complex soil treatment process to treat and restore soil and groundwater which is contaminated with oil, heavy metals, and nutrients through experiments with the series of treatment process such as bioreactor, rolled pipe type of contact oxidation system(RPS), and chemical processing system. 5 microbial strains were separated and selected through experiment, whose soil purification efficiency was excellent, and it was noted that anion- and nonion-series of complex agent was most excellent as a surfactant for effectively separating oils from soils. Method to mix and apply selected microbes after treating the surfactant in the contaminated soil was most effective. The removal efficiencies of total petroleum hydrocarbon (TPH)-contaminated soil about 5,000mg/L and above 10,000mg/L were approximatly 90.0% for 28 days and 90.7% for 81 days by soil remediation system and the average removal efficiencies of BOD, $COD_{Mn}$, SS, T-N, and T-P in leachate were 90.6, 73.0, 91.9, 73.8, 65.7% by the bioreactor and RPS. The removal efficiency was above 99.0% by chemical processing system into cohesive agents.

Field Assessment of in Situ Remediation of NO3--contaminated Ground Water Using Zero-valent Iron/Bio Composite Media (영가철/바이오 복합처리제를 이용한 질산성 질소 오염 지하수의 현장 지중정화 적용성 평가)

  • Joo, Wan-Ho;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • In this study, the assessment of field applicability of in-situ remediation of nitrate-contaminated groundwater located in Yesan-gun was performed. Zero-valent iron/bio composite media injected PRB (Permeable Reactive Barrier) and monitoring well were installed in the contaminated groundwater site and monitored main remediation indicators during the PRB operation. Nitrate, nitrite, ammonia, Fe ion, TOC, and turbidity were analyzed and the diversity and population of microorganism in the PRB installed site were investigated for the verification of effect of injected PRB. In the study site where is an agricultural area, a river flows from west to east that forms a river boundary and the southern area has an impermeable sector. It was found that nitrate flows into the river, which is similar as groundwater flow. Simulation result for the fate of nitrate in groundwater showed steady state of nitrate arrived after 3~5 years passed. However, it is just to consider current conditions with no additional input of contaminant source, if additional input of contaminant source occurs contamination dispersion and time for steady state are expected to be increased. The monitoring results showed that Fe ion, TOC and turbidity in groundwater were not clearly changed in concentration after PRB installation, which indicates adaptability of the injected PRB for remediation of groundwater with no additional harmful effect to water quality. The concentration of nitrate maintained less than 5mg/L until 42 days after PRB installation and recovered its initial concentration after 84 days passed and showed termination of reactivity of injected zero-valent iron/bio composite media for removal nitrate. Nitrite and ammonia ions found after installation of PRB indicates reductive removal of nitrate. And the outstanding increase of microorganism diversity and population of Betaproteobacteria Class which includes denitrification microorganism explains biologically reductive removal of nitrate in injected PRB.

Effect of Organic Matter and Moisture Content on Reduction of Cr(VI) in Soils by Zerovalent Iron (영가철에 의한 토양 Cr(VI) 환원에 미치는 유기물 및 수분함량 영향)

  • Yang, Jae-E.;Lee, Su-Jae;Kim, Dong-Kuk;Oh, Sang-Eun;Yoon, Sung-Hwan;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.60-65
    • /
    • 2008
  • Current soil remediation principles for toxic metals have some limitations even though they vary with different technologies. An alternative technology that transforms hazardous substances into nonhazardous ones would be environmentally beneficial. Objective of this research was to assess optimum conditions for Cr(VI) reduction in soils as influenced by ZVI(Zero-Valent Iron), organic matter and moisture content. The reduction ratio of Cr(VI) was increased from 37 to 40% as organic matter content increased from 1.07 to 1.75%. In addition, Cr(VI) concentration was reduced as soil moisture content increased, but the direct effect of soil moisture content on Cr(VI) reduction was less than 5% of the Cr(VI) reduction ratio. However, combined treatment of ZVI(5%), organic matter(1.75%) and soil moisture(30%) effectively reduced the initial Cr(VI) to over 95% within 5 days and nearly 100% after 30 days by increasing oxidation of ZVI and concurrent reduction of Cr(VI) to Cr(III). The overall results demonstrated that ZVI was effective in remediating Cr(VI) contaminated soils, and the efficiency was synergistic with the combined treatments of soil moisture and organic matter.