• 제목/요약/키워드: Biological nitrogen fixation (BNF)

검색결과 4건 처리시간 0.017초

Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement

  • Shin, Wansik;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Kim, Kiyoon;Gopal, Selvakumar;Samaddar, Sandipan;Banerjee, Somak;Sa, Tongmin
    • 한국토양비료학회지
    • /
    • 제49권1호
    • /
    • pp.17-29
    • /
    • 2016
  • Though there is an abundant supply of nitrogen in the atmosphere, it cannot be used directly by the biological systems since it has to be combined with the element hydrogen before their incorporation. This process of nitrogen fixation ($N_2$-fixation) may be accomplished either chemically or biologically. Between the two elements, biological nitrogen fixation (BNF) is a microbiological process that converts atmospheric di-nitrogen ($N_2$) into plant-usable form. In this review, the genetics and mechanism of nitrogen fixation including genes responsible for it, their types and role in BNF are discussed in detail. Nitrogen fixation in the different agricultural systems using different methods is discussed to understand the actual rather than the potential $N_2$-fixation procedure. The mechanism by which the diazotrophic bacteria improve plant growth apart from nitrogen fixation such as inhibition of plant ethylene synthesis, improvement of nutrient uptake, stress tolerance enhancement, solubilization of inorganic phosphate and mineralization of organic phosphate is also discussed. Role of diazotrophic bacteria in the enhancement of nitrogen fixation is also dealt with suitable examples. This mini review attempts to address the importance of diazotrophic bacteria in nitrogen fixation and plant growth improvement.

Nitrogen Balance and Biological Nitrogen Fixation of Soybean in Soybean-Barley Cropping System

  • Park Sei Joon;Kim Wook Han;Lee Jae Eun;Kwon Young Up;Shin Jin Chul;Ryu Yong Hwan;Seong Rak Chun
    • 한국작물학회지
    • /
    • 제50권1호
    • /
    • pp.1-4
    • /
    • 2005
  • This experiment was conducted to investigate the soil nitrogen credit of biological nitrogen fixation (BNF) and the nitrogen balance of soybean in soybean-barley cropping systems. Soybean cultivar, Shinpaldalkong2 and barley cultivar, Olbori, were used in soybean mono-cropping (SM), barley monocropping (BM), and barley­soybean double cropping system. The barley-soybean double cropping system was treated with two different levels of nitrogen fertilizers, 0 nitrogen fertilizer (BS-F0), and standard nitrogen fertilizer (BS-F1). Nitrogen and organic matter concentrations in soil of BS-F1 plot on October, 2001 were increased $4.8\%\;and\;5.9\%$, respectively, compared with those on October, 2000. The ranges of BNF rate in soybean were $69.1\~ 88.2\%$ in two years, and the rate was the highest in BS-F0 plot and the lowest in SM plot. The ranges of nitrogen harvest index (NHI) in all treatments were $83.9\~86.7\%$. The yield was 270 kg/10a in BS­F1 plot and 215 kg/10a in BS-F0 plot. However, the nitrogen balances were +0.6 kg/10a of gain of soil nitrogen in BS-F0 plot and -0.4 kg/10a of loss of soil nitrogen in BS-F1 plot. In comparisons of SM and BS-F1 plots, although the seed yields were similar in two plots, the loss of soil nitrogen was higher in SM than BS-F1 plot. Overall, our results suggest that barley-soybean double cropping system was more effective in respect to seed productivity and soil nitrogen conservation than soybean monocropping system, and the N credit to following crops by soybean cultivation was identified in soybean double cropping system.

Relationship between Nodulating Characters and Yield Components in Supernodulating Soybean Mutants

  • Park Sei Joon;Youn Jong Tag;Kim Wook Han;Lee Jae Eun;Kwon Young Up;Shin Jin Chul;Seong Rak Chun
    • 한국작물학회지
    • /
    • 제50권1호
    • /
    • pp.5-10
    • /
    • 2005
  • This experiment was conducted to clarify the functions of supernodulating characters on seed yield determination through the comparison of agricultural traits of supernodulating soybean mutants, Sakukei4, SS2-2, and their parent cultivars, Enrei and Shinpaldalkong2. The plant dry weights of supernodulating mutants, Sakukei4 and SS2-2, were $52\%$ and $61\%$ of their wild type parents at full seed stage (R6). However, the relative growth rate (RGR) from the pod set stage (R3) to R6 of Sakukei4 was 0.022 g/g/day and that of SS2-2 was 0.016 g/g/day, which were higher than those of their parents. Nodule number and dry weight were increased in two supernodulating mutants by the R6 stage. The nitrogen concentrations of leaf, petiole and stem of Sakukei4 were higher than those of Enrei. SS2-2 showed higher nitrogen concentration in petiole than Shinpaldalkong2 had. The positive correlations were appeared between nodule dry weight, plant dry weight and pod number, in two supernodulating mutants during the period from R3 to R6 stage. Although all of the yield components and seed yield were lower in two supernodulating mutants than their parents at the stage of full maturity (R8), the harvest index was higher in supernodulating mutants. The increasing rates of pod number to stem dry weight in two supernodulating mutants showed the higher than those of two their parents at R8 stage. In conclusion, the relative growth rates during the early to the middle reproductive growth period were higher in supernodulating mutants than the wild types. This could be resulted in an increase in pod number. The increase of relative growth rate was the result of the successive supplement of nitrogen source from biological nitrogen fixation (BNF) of nodules during the middle reproductive growth period in supernodulating mutants.

Growth and Maturity in Response to Planting Times in Supernodulating Soybean Mutants

  • Park Sei Joon;Youn Jong Tag;Lee Jae Eun;Kim Wook Han;Kwon Young Up;Shin Jin Chul;Seong Rak Chun
    • 한국작물학회지
    • /
    • 제50권1호
    • /
    • pp.11-15
    • /
    • 2005
  • This experiment was conducted to investigate the changes of growth and maturity and to clarify the function of supernodulating characters, excessive nodules and high biological nitrogen fixation rate (BNF), on maturity in response to different planting time in supernodulating soybean mutants. Two supernodulating soybean mutants, Sakukei4 and SS2-2, and their parent cultivars, Enrei and Shinpaldalkong2, were planted on May 24 and June 15, 2004. The degrees of the shortening of growth days by the planting time delay were 18 to 22 days in four cultivar, and there were no significant differences among the cultivars. However, four cultivars showed the different maturity properties. Sakukei4, mutated from Enrei, showed later maturity than that of Enrei, and 882-2, mutated from Shinpaldalkong2, showed earlier maturity than that of Shinpaldalkong2. The plant and nodule dry weights at R6 stage of Sakukei4 showed the smallest decrement and those of SS2-2 was showed the largest decrement by the delay of planting time. The photosynthetic rates of Sakukei4 during the late reproductive growth period were slowly decreased, however those of SS2-2 were steeply decreased in two planting time treatments. Overall, the growth of Sakukei4 was decreased slowly, however the growth of SS2-2 was decreased sharply according to the delay of planting time. The percentage of seed yield of Sakukei4 in June planting plot compared with May planting plot at R8 stage was $92\%$, which was the lowest decreasing rate of yield among the cultivars, and in the case of SS2-2, it was in $76\%$, the highest one. These results indicated that the responses of supernodulating mutants by the delay of planting time were very similar to the wild types. This means supernodulating characters in supernodulating soybean mutants might not affect to the maturity property. Additionally, the maturity property could be considered as an important characteristics to decide or to select on the developments of supernodulating soybean mutants, which have a low productivity by an excessive nodules, especially.