• Title/Summary/Keyword: Biological nitrification

Search Result 186, Processing Time 0.022 seconds

Treatment Efficiency of a Subsurface-Flow Wetland System Constructed on Floodplain (고수부지를 이용한 여과습지의 수질정화 초기처리)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.56-63
    • /
    • 2001
  • This paper presents treatment efficiency and plant growth of a subsurface-flow constructed wetland system (23 m in length, 6.5 m in width, 0.65 m in depth) over one year after its establishment on floodplain of a stream in June 2000. An upper layer of 10 cm in depth was filled with course sand and the main biological layer of 50 cm depth with crushed stone with 8 - 15 mm in diameter. The system was planted with common reeds (Phragmites australis) grown on pots. Effluent discharged from a secondary-level treatment plant was funneled into it. Reed stems emerging in April 2001 grew up to 145.9cm until July 2001. The number of reed stems in July 2001 increased by about 11 times compared with that just after planting. The system was inundated seven times by storms over the monitoring period. Reeds were slightly bent after flooding, however they returned to almost upright standing in a couple of weeks. Small portion of inside slope of berm was eroded and the system surface had a sedimentation of 2 - 3 mm in depth. The average removal rates for SS, $BOD_5$, T-N and T-P was 73%, 70%, 53%, and 72%, respectively. The purification efficiencies for SS and $BOD_5$ were fairly good. The reduction rates for T-N was relatively low for the period of late fall through winter until early spring due to lower water temperature which retarded microbial nitrification and denitrification mechanisms. Reduction in the concentration of T-P during fall and winter was relatively higher than that during spring. Leach of phosphorous from plant litters lying on system surface and slight resuspension of precipitated phosphorous in substrates resulted in lower reduction for T-P in spring.

  • PDF

A Study on Autocontrolled SBR for Biological Nutrient Removal with External Carbon Sources (외부탄소원 주입시 영양염류의 생물학적 제거를 위한 자동제어 SBR 공정에 관한 연구)

  • Lee, Byung-hun;Kang, Seong-jae;Lim, Sung-il;Yoo, Pyung-jong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.371-377
    • /
    • 2002
  • The purpose of this study is to develop effective operating process in order to achieve more suitable conditions of Anoxic-Oxic-Anoxic-Stripper(AOAS) SBR through real-time control. To improve the removal efficiency, glucose, methanol and synthetic food waste acid fermentant were added as an external carbon source, In the case of glucose and synthetic food waste acid fermentant, TN, TP were removed to average 86.9%, 73.0% respectively. Methanol was removed to average 64.6%, 55.4% respectively. The synthetic food waste acid fermentant proved to be the most efficient and allowed for the substitution of an external carbon source. The removal rate of $COD_{Cr}$, was approximately 90% at all cases. The results of the study that a correlation between ORP (Oxidation-Reduction Potential), pH and DO and nitrification or denitrification when an external carbon source is added and when it isn't was showed that ${\Delta}ORP$ is suitable parameter. ORP reacted properly to denitrification (${\Delta}ORP<-10$) and nitrification (${\Delta}ORP<0$). The use of real-time control saved anywhere between 61 and 67 minutes at the anoxic(1) stage and 26 to 52 minutes at the oxic(1) stage. When the time saved from the anoxic(1) and oxic(1) was added to the anoxic(2) stage for the removal efficiency of TN and TP increased from 0.7 to 13.9% and 12 to 35 % respectively.

Development of a Rotating Biological Contactor(RBC) Process for the Advanced Wastewater Treatment (회전원판(回轉圓板) 생물막(生物膜) 공법(工法)을 이용한 하(下)·폐수(廢水)의 고도처리(高度處理) 공정(工程) 개발(開發))

  • Kim, Eung Ho;Park, Jae Lo;Yoon, Jung Ro
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 1994
  • This study was conducted to develop a new RBC process available for the effective removal of organic matters and nitrogen in sewage. The RBC process for the oxidation organic compounds and nitrification was designed to occur at the 1st-stage and next-stage RBC respectively. Then nitrified water was recycled to the denitrifying RBC located at the lower part of the 1st-stage RBC. Some results were summarized as follows. 1. The loading limitation was represented as $60g{\cdot}COD/gm^2/day$ in experiment of simultaneous removal of organic matter and nitrogen. The maxmum COD % removal was 85% at the load $35g{\cdot}COD/m^2/day$. 2. The $NO_3-N$ % removal was approximately 80% at the load $60g{\cdot}COD/m^2/day$ and the maximum $NO_3-N$ remaval rate was $3.9g{\cdot}COD/m^2/day$ and the overall C/N ratio of 11.0 as required to achive 80% of $NO_3-N$% removal. 3.$NO_3-N$ removal rate was rapidly decreased above the load $7g{\cdot}NH_4{^+}-N/m^2/day$ and the maximum $NO_3-N$ removal rate was $3.7g{\cdot}NO_3-N/m^2/day$. 4. Irrespective of the recycle ratio, the COD % removal at the system of 2-stage RBC unit was nearly constant as 89% while the maximum one in the 1st-stage unit was 77% in the case of 50% recycle. 5. The maximum COD % removal in the 3-stage RBC system was 93% while 1st-stage one being 80%, under the $NH_4{^+}-N$ load of $7.4g/m^2{\cdot}d$. Also maximum percentage of nitrification and denitrification was 69% and 41% respectively, under the same $NH_4{^+}-N$ load.

  • PDF

Optimal Operation Condition of Livestock Wastewater Treatment Using Shortcut Biological Nitrogen Removal Process (단축질소제거 공정을 이용한 가축분뇨의 적정 처리조건 연구)

  • Jin-Young Kang;Young-Ho Jang;Byeong-Hwan Jeong;Yeon-Jin Kim;Yong-Ho Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.5
    • /
    • pp.390-395
    • /
    • 2023
  • The feasibility of applying the shortcut nitrogen removal process to treat livestock wastewater on individual farms was examined, and appropriate operating parameters were established. As a result,, it was determined that the nitrification reaction was carried out under 550 mg/L of ammonium nitrogen concentration, but it was less effective under conditions of high ammonia concentration. Consequently, it was confirmed that a partial injection of inflow water was necessary to minimize the effects of ammonia toxicity. Following the sequential batch reactor (SBR) operation results, it was difficult to achieve the effluent quality standard without an external carbon source. Also, selection of the appropriate hydraulic retention time was critical for the optimal SBR operation. Following the livestock farm application, with external carbon source injecting, the total nitrogen concentration in the effluent was 85.1 mg/L. This result revealed that the standard could be accomplished through a single treatment on individual livestock farms. The ratio of nitrite nitrogen to ammonia nitrogen in the effluent was verified to be suitable for implementing the anammox process with a 10 days of hydraulic retention time. This study demonstrated the potential applicability of process in the future. However, in order to apply to livestock farms, managing variations in wastewater load across individual farms and addressing reduced nitrogen oxidation efficiency during the winter season are crucial.

Evaluation of Settling Characteristics at Lamellar Secondary Clarifier (Lamellar 이차침전지에서의 침강 특성 파악)

  • Lee, Byong-Hi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.471-478
    • /
    • 2012
  • Where an activated sludge system needs to be converted to biological nutrient removal(BNR) system, the secondary clarifier must handle higher MLSS from bioreactor since nitrification in BNR system that requires higher SRTs than activated sludge system. Either increase the clarifier size or modification of clarifier physical structure is required to cope with MLSS surge. One of recommended structural modification is the insertion of Lamellar within clarifier. In this study, two clarifiers - one has Lamellar structure inserted and the other does not - were used to compare the effect of Lamellar in solid/liquid separation. Same MLSS was fed to both clarifiers and concentrations of MLSS were varied. With all MLSS concentrations, attachment of MLSS on Lamellar was observed and it was found that detached MLSS caused the higher effluent SS concentrations than that of non-Lamellar clarifier effluent. From these results, Lamellar should not be inserted in clarifier to handle MLSS from BNR processes and the recommendation must be withdrawn.

The Need of Biofilter for Ammonia Removal in Recirculating Aquaculture System

  • Harwanto, Dicky;Jo, Jae-Yoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • With the world's population increase, demands of fish production increased rapidly. Because of the demand increase, methods of aquaculture also become more intense. With the increasing intensity of aquaculture, more metabolites in the system are accumulated. The metabolites accumulated in the system turn to the causatives of water quality deterioration and become limiting factors for fish growth. Due to the toxicity of ammonia, ammonia removal is needed in aquaculture system. Biofilters, often referred as biological filter or nitrification filter are commonly used in recirculating aquaculture system to remove ammonia and convert it to nitrite, and then to nitrate.

  • PDF

A Study on the Recovery of Carbon Energy by Thermophilic Aerobic Digestion (고온호기성 소화공정을 이용한 탄소원 회수에 관한 연구)

  • Yi, Yunseok;Kim, Ryunho;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.906-912
    • /
    • 2007
  • A lab-scale thermophilic aerobic digestion (TAD) system was operated at $64^{\circ}C$ with mixed primary and secondary sludges taken from a large wastewater treatment plant. The semi-continuously operated reactor at HRTs of 1, 3 and 6 days indicated that longer HRT could stabilize sludge organics and solids comparable to anaerobic digestion. It has been found that reduced HRT of 3 and 1 day produced the effluent with highly biodegradable soluble organics, indicating the possibility of energy recovery in TAD. No proof of biological nitrification was observed at thermophilic operating temperature of $64^{\circ}C$, while nitrogen removal seemed due to nitrogen exertion during the aerobic thermophilic cell synthesis as well as ammonia stripping.

Nitrogen and Phosphorus Removal in Membrane Bio-Reactor (MBR) Using Simultaneous Nitrification and Denitrification (SND) (동시 질산화-탈질(SND) 반응을 적용한 MBR 반응조에서 질소 및 인 제거 특성)

  • Tian, Dong-Jie;Lim, Hyun-Suk;An, Chan-Hyun;Lee, Bong-Gyu;Jun, Hang-Bae;Park, Chan-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.724-729
    • /
    • 2013
  • Simultaneous nitrification and denitrification (SND) occurs concurrently in the same reactor under micro dissolved oxygen (DO) conditions. Anaerobic zone was applied for phosphorus release prior to an aerated membrane bio-reactor (MBR), and anoxic zone was installed by placing a baffle in the MBR for enhancing denitrification even in high DO concentration in the MBR. Phosphorus removal was tested by alum coagulation in the anaerobic reactor preceding to MBR. DO concentration were 2.0, 1.5, 1.0, 0.75 mg/L in the MBR at different operating stages for finding optimum DO concentration in MBR for nitrogen removal by SND. pH was maintained at 7.0~8.0 without addition of alkaline solution even with alum addition due to high alkalinity in the raw sewage. Both TCODcr and $NH_4^+$-N removal efficiency were over 90% at all DO concentration. TN removal efficiencies were 50, 51, 54, 66% at DO concentration of 2.0, 1.5, 1.0, 0.75 mg/L, respectively. At DO concentration of 0.75 mg/L with addition of alum, TN removal efficiency decreased to 54%. TP removal efficiency increased from 29% to 95% by adding alum to anaerobic reactor. The period of chemical backwashing of the membrane module increased from 15~20 days to 40~50 days after addition of alum.

Nitrogen Transport In Groundwater-Surface Water Hyporheic Zone at Brackish Lake (기수호의 지하수-지표수 혼합대 내 질소 거동 분석)

  • Seul Gi Lee;Jin Chul Joo;Hee Sun Moon;Su Ryeon Kim;Dong Jun Kim
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.2
    • /
    • pp.23-34
    • /
    • 2024
  • Sediment, aquifer materials, surface water, and groundwater from brackish Songji lake affected by salinity of seawater, were collected and a pilot scale column experiment was conducted to simulate the nitrogen transport through the hyporheic zone. Upstream experiments of groundwater displayed that groundwater containing a small amount of salt percolated into aquifers and sediments, maintaining low dissolved oxygen concentrations. In addition, partial denitrification occurred in the aquifer due to salinity and low dissolved oxygen, resulting in the accumulation of NO2-. In sediments,nitrogenous compounds were reduced due to adsorption by long residence times or microbial-mediated oxidation/reduction reactions. Downstream experiments of surface water displayed that surface water from the brackish lake, containing high concentrations of dissolved oxygen and salts, infiltrated into the sediments and aquifer, supplying high dissolved oxygen concentrations. This resulted in biological nitrification in the sediments and aquifer, which reduced nitrogen-based pollutants despite the high salt concentration in the surface water. Whereas partial denitrification at low dissolved oxygen concentrations in the upwelling mixing zone was observed by salinity and accumulated NO2-, nitrification at high dissolved oxygen concentrations in the downwelling mixing zone was not significantly affected by salinity. These results confirm that salinity in the brackish water lake has some influence on the nitrogen behavior of the hyporheic mixing zone, although nitrogen behavior is a complex combination of factors such as DO, pH, substrate concentration, and organic matter concentration.

Effect of Microbubble Ozonation Process on Performance of Biological Reactor System for Excess Sludge Solubilisation (마이크로버블오존을 이용한 잉여슬러지 가용화 처리가 생물반응조의 성능에 미치는 영향)

  • Lee, Shun-Hwa;Jung, Kye-Ju;Kwon, Jin-Ha;Lee, Se-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • The study purpose was to examine an effect of zero emission of excess sludge on biological reactor and treated water quality within the biological reactor in the process of biological treatment combined with excess sludge reduction system with ozone. Under an ozone injection rate 0.03 g $O_3/g$ SS, Sludge Disintegration Number (SDN) 3 and less than pH 4 as pre-treatment process, it was possible to maintain a stable biological treatment process without sludge disintegration. In the test of $OUR_{max}$, of sludge, its value was hardly under the condition of ozone injection rate 0.03 g $O_3/g$ SS. There were almost no changes of MLVSS/MLSS within biological reactor followed by a solubilization of excess sludge. Accumulation of microorganism within biological reactor was also not observed. After solubilization of excess sludge, an increase for organic matter and SS concentrations of an effluent was not observed and T-N concentration was reduced by increasing nitrification and denitrification rate within biological reactor. Most of T-P was not removed by zero emission of excess sludge and was leaked by being included in effluents.