• Title/Summary/Keyword: Biological estimation

Search Result 513, Processing Time 0.022 seconds

Regional Myocardial Blood Flow Estimation Using Rubidium-82 Dynamic Positron Emission Tomography and Dual Integration Method (Rubidium-82 심근 Dynamic PET 영상과 이중적분법을 이용한 국소 심근 혈류 예측의 기본 모델 연구)

  • 곽철은;정재민
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.223-230
    • /
    • 1995
  • This study investigates a combined mathematical model for the quantitative estimation of regional myocardial blood flow in experimental canine coronary artery occlusion and in patients with ischemic myocardial diseases using Rb-82 dynamic myocardial positron emission tomography. The coronary thrombosis was induced using the new catheter technique by narrowing the lumen of coronary vessel gradually, which finally led to partial obstruction of coronary artery. Thirty four Rb-82 dynamic myocardial PET scans were performed sequentially for each experiment using our 5, 10 and 20 second acquisition protocol, respectively, and six to seven regions of interest were drawn on each transaxial slices, one on left ventricular chamber for input function and the others on normal and decreased perfusion myocardial segments for the flow estimation in those regions. Two compartment model and graphical analysis method have been applied to the measured sets of regional PET data, and the rate constants of influx to myocardial tissue were calculated for regional myocardial flow estimates with the two parameter fits of raw data by the Levenberg-Marquardt method. The results showed that, (I) two compartment model suggested by Kety-Schmidt, with proper modification of the measured data and volume of distribution, could be used for the simple estimation of regional myocardial blood flow, (2) the calculated regional myocardial blood flow estimates were dependent on the selection of input function, which reflected partial volume effect and left ventricular wall motion in previously used graphical analysis, and (3) mathematically fitted input and tissue time activity curves were more suitable than the direct application of the measured data in terms of convergence.

  • PDF

Monthly Sediment Yield Estimation Based on Watershed-scale Application of ArcSATEEC with Correction Factor (보정계수 적용을 통한 유역에 대한 ArcSATEEC의 월별 토양유실량 추정 방안 연구)

  • Kim, Eun Seok;Lee, Hanyong;Yang, Jae E;Lim, Kyoung Jae;Park, Youn Shik
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.52-64
    • /
    • 2020
  • The universal soil loss equation (USLE), a model for estimating the potential soil loss, has been used not only in research areas but also in establishing national policies in South Korea. Despite its wide applicability, USLE cannot adequately address the effect of seasonal variances. To overcome this limit, the ArcGIS-based Sediment Assessment Tool for Effective Erosion (ArcSATEEC) has been developed as an alternative model. Although the field-scale (< 100 ㎡) application of this model produced reliable estimation results, it is still challenging to validate accuracy of the model estimation because it only estimates potential soil losses, not the actual sediment yield. Therefore, in this study, a method for estimating actual soil loss based on the ArcSATEEC model was suggested. The model was applied to eight watersheds in South Korea to estimate sediment yields. Correction factor was introduced for each watershed, and the estimated sediment yield was compared with that of the estimated yield by LOAD ESTimator (LOADEST). Sediment yield estimation for all watersheds exhibited reliable results, and the validity of the proposed correction factor was confirmed, suggesting the correction factor needs to be considered in estimating actual soil loss.

320-Channel Multi-Frequency Trans-Admittance Scanner(TAS) for Anomaly Detection (도전율 및 유전율이 다른 병소의 검출을 위한 320-채널 다주파수 Trans-Admittance Scanner(TAS))

  • Oh, Tong-In;Lee, Min-Hyoung;Kim, Hee-Jin;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.84-94
    • /
    • 2007
  • In order to collect information on local distribution of conductivity and permittivity underneath a scan probe, we developed a multi-frequency trans-admittance scanner (TAS). Applying a sinusoidal voltage with variable frequency on a chosen distal part of a human body, we measure exit currents from 320 grounded electrodes placed on a chosen surface of the subject. The electrodes are packaged inside a small and light scan probe. The system includes one voltage source and 17 digital ammeters. Front-end of each ammeter is a current-to-voltage converter with virtual grounding of a chosen electrode. The rest of the ammeter is a voltmeter performing digital phase-sensitive demodulation. Using resistor loads, we calibrate the system including the scan probe to compensate frequency-dependent variability of current measurements and also inter-channel variability among multiple. We found that SNR of each ammeter is about 85dB and the minimal measurable current is 5nA. Using saline phantoms with objects made from TX-151, we verified the performance of the lesion estimation algorithm. The error rate of the depth estimation was about 19.7%. For the size estimate, the error rate was about 15.3%. The results suggest improvement in lesion estimation algorithm based on multi-frequency trans-admittance data.

Estimation of Blood Pressure Diagnostic Methods by using the Four Elements Blood Pressure Model Simulating Aortic Wave Reflection (대동맥 반사파를 재현한 4 element 대동맥 혈압 모델을 이용한 혈압 기반 진단 기술의 평가)

  • Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.183-190
    • /
    • 2015
  • Invasive blood pressure (IBP) is measured for the patient's real time arterial pressure (ABP) to monitor the critical abrupt disorders of the cardiovascular system. It can be used for the estimation of cardiac output and the opening and closing time detection of the aortic valve. Although the unexplained inflections on ABP make it difficult to find the mathematical relations with other cardiovascular parameters, the estimations based on ABP for other data have been accepted as useful methods as they had been verified with the statistical results among vast patient data. Previous windkessel models were composed with systemic resistance and vascular compliance and they were successful at explaining the average systolic and diastolic values of ABP simply. Although it is well-known that the blood pressure reflection from peripheral arteries causes complex inflection on ABP, previous models do not contain any elements of the reflections because of the complexity of peripheral arteries' shapes. In this study, to simulate a reflection wave of blood pressure, a new mathematical model was designed with four elements that were the impedance of aorta, the compliance of aortic arch, the peripheral resistance, and the compliance of peripheral arteries. The parameters of the new model were adjusted to have three types of arterial blood pressure waveform that were measured from a patient. It was used to find the relations between the inflections and other cardiovascular parameters such as the opening-closing time of aortic valve and the cardiac output. It showed that the blood pressure reflection can bring wide range errors to the closing time of aortic valve and cardiac output with the conventional estimation based on ABP and that the changes of one-stroke volumes can be easily detected with previous estimation while the changes of heart rate can bring some error caused by unexpected reflections.

Attenuation Estimation of Soft Tissue by the Entropy Method and Statistical Averaging of Speckle Patterns (스펙클 패턴의 통계적 평균과 엔트로피 방식에 의한 초음파 감쇄계수 추정방법)

  • Song, T.K;Park, J.C;Park, S.B
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.253-260
    • /
    • 1989
  • The time domain methods of estimating the attenuation coefficient are generally based on the analysis of statisical properties of the reflected echoes form an attenuating medium. Hence, it is often required to have a large number of data samples in order to obtain a statistically stable estimation result. In the attenuation estimation problem, this means that many different speckle patterns are required in the spatial resolution volume of an attenLlation image. In this paper, by using the fact that the speckle pattern Is sensitive to the point spread function of the ultrasound beam, we suggest a method to generate the statiscally uncorrelated or slightly correlated data samples in a given region by rotating a linear transducer and carrying out lateral scans for all rotating angles. This technique is applied to the entropy method for attenuation estimation proposed recently by the authors where the performance is verified by experiments using a tissue equivalent phantom.

  • PDF

Development and Evaluation of Regression Model for TOC Contentation Estimation in Gam Stream Watershed (감천 유역의 TOC 농도 추정을 위한 회귀 모형 개발 및 평가)

  • Jung, Kang-Young;Ahn, Jung-Min;Lee, Kyung-Lak;Kim, Shin;Yu, Jae-Jeong;Cheon, Se-Uk;Lee, In Jung
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.743-753
    • /
    • 2015
  • In this study, it is an object to develop a regression model for the estimation of TOC (total organic carbon) concentration using investigated data for three years from 2010 to 2012 in the Gam Stream unit watershed, and applied in 2009 to verify the applicability of the regression model. TOC and $COD_{Mn}$ (chemical oxygen demand) were appeared to be derived the highest correlation. TOC was significantly correlated with 5 variables including BOD (biological oxygen demand), discharge, SS (suspended solids), Chl-a (chlorophyll a) and TP (total phosphorus) of p<0.01. As a result of PCA (principal component analysis) and FA (factor analysis), COD, TOC, SS, discharge, BOD and TP have been classified as a first factor. TOCe concentration was estimated using the model developed as an independent variable $BOD_5$ and $COD_{Mn}$. R squared value between TOC and measurement TOC is 0.745 and 0.822, respectively. The independent variable were added step by step while removing lower importance variable. Based on the developed optimal model, R squared value between measurement value and estimation value for TOC was 0.852. It was found that multiple independent variables might be a better the estimation of TOC concentration using the regression model equation(in a given sites).

Stature estimation using the sacrum in a Thai population

  • Waratchaya Keereewan;Tawachai Monum;Sukon Prasitwattanaseree;Pasuk Mahakkanukrauh
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.259-267
    • /
    • 2023
  • Stature is an essential component of biological profile analysis since it determines an individual's physical identity. Long bone dimensions are generally used to estimate the stature of skeletal remains; however, non-long bones such as the sternum, cranium, and sacrum may be necessary for some forensic situations. This study aimed to generate a regression equation for stature estimation of the skeletal remains in the Thai population. Ten measurements of the sacrum were measured from 200 dry sacra. The results revealed that the maximum anterior breadth (MAB) provided the most accurate stature prediction model among males (correlation coefficient [r]=0.53), standard error of estimation (SEE=5.94 cm), and females (r=0.48, SEE=6.34 cm). For the multiple regression model, the best multiple regression models were stature equals 41.2+0.374 (right auricular surface height [RASH])+1.072 (anterior-posterior outer diameter of S1 vertebra corpus [APOD])+0.256 (dorsal height [DH])+0.417 (transverse inner diameter of S1 vertebra corpus [TranID])+0.2 (MAB) with a SEE of 6.42 cm for combined sex. For males, stature equals 63.639+0.478 (MAB)+0.299 (DH)+0.508 (APOD) with a SEE of 5.35, and stature equals 75.181+0.362 (MAB)+0.441 (RASH)+0.132 (maximum anterior height [MAH]) with a SEE of 5.88 cm for females. This study suggests that regression equations derived from the sacrum can be used to estimate the stature of the Thai population, especially when a long bone is unavailable.

Cytogenetic and Medical Examination Report of Accidental Exposure of Nuclear Power Plant Worker using Multiple Assays (원자력 발전소 피폭자 건강영향평가 사례보고)

  • Lee, Jung-Eun;Yang, Kwang-Hee;Jang, Yun-Kun;Jeong, Mee-Seon;Kim, Chong-Soon;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.111-115
    • /
    • 2007
  • A deuterium oxide leakage accident occurred on October 4, 1999, at nuclear power plant in Korea. The concentration of tritium in air increased and 22 workers were exposed by tritium at that time. It is well known that tritium causes internal exposure. Therefore, we examined complete blood cell count, physical and biological dosimetry fur 13 workers among whole 22 workers to check the health effect and to evaluate the dose estimation of tritium exposure. The leukocyte count test, one of general blood test, was normal. The estimated doses were 0 - 4.44 mSv by physical dosimetry and 0-37 mGy by biological dosimetry. This dose does not exceed radiation dose limit, and the clinical symptoms of the exposed workers were not shown. The consistency between clinical sign and estimated dose means that physical and biological dosimetry were very useful especially in accident evaluation.

Biological aspects and population dynamics of Indian mackerel (Rastrelliger kanagurta) in Barru, Makassar Strait, Indonesia

  • Andi Asni;Hasrun;Ihsan;Najamuddin
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.392-409
    • /
    • 2024
  • The present study aims to analyze the biological aspects and population dynamics of Indian mackerel in Barru waters. Data was collected in Barru for 11 months, from June 2022 to April 2023. The observed parameters of biological aspects included gonadal maturation stages (GMSs), size at first gonadal maturation, and length-weight relationship. Meanwhile, the aspects of population dynamics encompass age group, growth, mortality rate, and exploitation rate. Data analysis consisted of morphological selection of general maturation stages, Spearman-Kärber method in estimating gonadal first maturation size, Bhattacharya method in identifying age group, von Bertalanffy function through FISAT II to measure growth (L and K), Pauly Model to estimate mortality rate, Beverton & Holt Model to estimate Y/R, and virtual population analysis (VPA) analysis to estimate stock and fish yield. The results demonstrated that GMS I was observed to be dominant, followed by stages II and III. The initial gonadal maturation was estimated to be 17.98-19.28 cm (FL) for females and 17.98-19.27 cm (FL) for males. The length-weight relationship in male and female Indian mackerels indicated a positive allometric growth. The mode grouping analysis results from the fork length measurement revealed three age groups. It was also identified that the asymptotic length (L) = 29.5 cm (fork length), growth rate coefficient (K) = 0.46 per year, and theoretical age at zero length (t0) = -0.3576 per year. Total mortality (Z) = 2.67 per year, natural mortality (M) = 1.10 per year, fishing mortality (F) = 1.57 per year, and exploitation rate (E) = 0.59, the actual Y/R = 0.083 gram/recruitment, and optimal Y/R 0.03 gram/recruitment. Fishing mortality is higher than the natural mortality rate, and a high exploitation value (E > 0.5) also reflects over-exploitation. VPA analysis on fish yields and stock estimation reported a highly exploited rate between the 11.5 cm and 14.5 cm length classes and an exceeding current yield of 467.07 tons/year with a recommended yield of 233.53 tons/year to ensure population sustainability.

A Gaussian Mixture Model Based Surface Electromyogram Pattern Classification Algorithm for Estimation of Wrist Motions (손목 움직임 추정을 위한 Gaussian Mixture Model 기반 표면 근전도 패턴 분류 알고리즘)

  • Jeong, Eui-Chul;Yu, Song-Hyun;Lee, Sang-Min;Song, Young-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).