• Title/Summary/Keyword: Biological design

Search Result 1,375, Processing Time 0.028 seconds

Dynamic Modeling and Design of Finger Exoskeleton Using Polymer Actuator (고분자 구동체를 이용한 손가락 외골격기구의 설계 및 동력학적 모델 개발)

  • Jeong, Gwang-Hun;Kim, Yoon-Jeong;Yoon, Bye-Ri;Wang, Hyuck-Sik;Song, Dae-Seok;Kim, Sul-Ki;Rhee, Kye-Han;Jho, Jae-Young;Kim, Dong-Min;Lee, Soo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.717-722
    • /
    • 2012
  • This paper presents the design and dynamic model of the finger exoskeleton actuated by Ionic Polymer Metal Composites (IPMC) to assist a tip pinch task. Although this exoskeleton will be developed to assist 3 degree-of-freedom motion of each finger, it has been currently made to perform the tip pinch task using 1 degree-of-freedom mechanism as the first step. The six layers of IPMC were stacked in parallel to increase the low actuation force of IPMC. In addition, the finger dummy was manufactured to evaluate the performance of the finger exoskeleton. The pinch task experiments, which were performed on the finger dummy with the developed exoskeleton, showed that the pinch force close to the desired level was obtained. Moreover, the dynamic model of the exoskeleton and finger dummy was developed in order to perform the various analyses for the improvement of the exoskeleton.

Sensitivity Analysis with Optimal Input Design and Model Predictive Control for Microalgal Bioreactor Systems (미세조류 생물반응기 시스템의 민감도분석을 위한 최적입력설계 및 모델예측제어)

  • Yoo, Sung Jin;Oh, Se-Kyu;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.87-92
    • /
    • 2013
  • Microalgae have been suggested as a promising feedstock for producing biofuel because of their potential of lipid production. In this study, a first principles ODE model for microalgae growth and neutral lipid synthesis proposed by Surisetty et al. (2010) is investigated for the purpose of maximizing the rate of microalgae growth and the amount of neutral lipid. The model has 6 states and 12 parameters and follows the assumption of Droop model which explains the growth as a two-step phenomenon; the uptake of nutrients is first occurred in the cell, and then use of intra-cellular nutrient to support cells growth. In this study, optimal input design using D-optimality criterion is performed to compute the system input profile and sensitivity analysis is also performed to determine which parameters have a negligible effect on the model predictions. Furthermore, model predictive control based on successive linearization is implemented to maximize the amount of neutral lipid contents.

Electron Accelerator Shielding Design of KIPT Neutron Source Facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.785-794
    • /
    • 2016
  • The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.

Optimization of main factors using response surface method for the enhanced production of hGM-CSF from transgenic Nicotiana tabacum cell suspension cultures

  • Lee, Ki-Yong;Lee, Sang-Yoon;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.351-355
    • /
    • 2003
  • Response surface methodology was employed to study the interactive effect of sucrose, nitrogen, temperature and to optimize their levels to enhance the production of human granulocyte-macrophage colony-stimulation factor from Nicotiana tabacum cell suspension cultures. A 15-runs Box-Behnken design including three center points was the response surface method selected for the initial set of experiments. The analysis of the data from the Box-Behnken experiments showed interactive effects of sucrose:nitrogen, sucrose:temperature and nitrogen:temperature. The optimal combinations of sucrose, nitrogen and temperature for hGM-CSF production from surface plot were sucrose 90 g/L, nitrogen 41 mM and 22$^{\circ}C$, respectively. The optimization of there factors enhanced the hGM-CSF production by 2 times because high sucrose concentration stimulated the secretion of hGM-CSF and low temperature prevented hGM-CSF degradation in media by pretenses.

  • PDF

Design, Optimization and Validation of Genomic DNA Microarrays for Examining the Clostridium acetobutylicum Transcriptome

  • Alsaker, Keith V.;Paredes, Carlos J.;Papoutsakis, Eleftherios T.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.432-443
    • /
    • 2005
  • Microarray technology has contributed Significantly to the understanding of bacterial genetics and transcriptional regulation. One neglected aspect of this technology has been optimization of microarray-generated signals and quality of generated information. Full genome microarrays were developed for Clostridium acetobutylicum through spotting of PCR products that were designed with minimal homology with all other genes within the genome. Using statistical analyses it is demonstrated that Signal quality is significantly improved by increasing the hybridization volume. possibly increasing the effective number of transcripts available to bind to a given spot, while changes in labeled probe amounts were found to be less sensitive to improving signal quality. In addition to Q-RT-PCR, array validation was tested by examining the transcriptional program of a mutant (M5) strain lacking the pSOL1 178-gene megaplasmid relative to the wildtype (WT) strain. Under optimal conditions, it is demonstrated that the fraction of false positive genes is 1% when considering differentially expressed genes and 7% when considering all genes with signal above background. To enhance genomic-scale understanding of organismal physiology, using data from these microarrays we estimated that $40{\sim}55%$ of the C. acetobutylicum genome is expressed at any time during batch culture, similar to estimates made for Bacillus subtilis.

Developing a Bioinformatics Tool for Peptide Nucleic Acid (PNA) antisense Technique Utilizing Parallel Computing System (Peptide Nucleic Acid(PNA)를 이용한 antisense 기법에 적용할 병렬 컴퓨팅용 Bioinformatics tool 개발)

  • Kim Seong-Jo;Jeon Ho-Sang;Hong Seung-Pyo;Kim Hyon-Chang;Kim Han-Jip;Min Churl-K
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.43-45
    • /
    • 2006
  • Unlike RNA interference, whose usage is limited to eukaryotic cells, Peptide Nucleic Acid (PNA) technique is applicable to both eukaryotic and prokaryotic cells. PNA has been proven to be an effective agent for blocking gene expressions and has several advantages over other antisense techniques. Here we developed a parallel computing software that provides the ideal sequences to design PNA oligos to prevent any off-target effects. We applied a new approach in our location-finding algorithm that finds a target gene from the whole genome sequence. Message Passing Interface (MPI) was used to perform parallel computing in order to reduce the calculation time. The software will help biologists design more accurate and effective antisense PNA by minimizing the chance of off-target effects.

  • PDF

Model development to design modified atmosphere packaging of Mandarin oranges

  • Kim, Jong-Kyoung;Lee, Sang-Duk;Ha, Young-Sun;Lee, Jun-Ho
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.192.1-192
    • /
    • 2003
  • The aim of this study was to develop a model that could be used in the design of modified atmosphere packaging (MAP) for Mandarin oranges. Respiratory data at 5, 10, 20$^{\circ}C$ for mandarin oranges were gathered and altered for create useful respiration model. The maximum rate of oxygen uptake increased with increasing temperature. The packaging materials were conventional low density polyethylene and polypropylene with anti-fog, and anti-fungi treatments, and thickness was 30 $\mu\textrm{m}$ and 50 $\mu\textrm{m}$. Permeability tests were performed to find their oxygen, carbon dioxide, water vapor transmission rate as increases in temperature. Test results were then converted to logarithm format for MAP modeling. Optimum gas composition in the package system for fruits were set according to literature and upper or lower limits of oxygen and dioxide established. To predict gas composition at certain storage time, weight of fruits, film thickness, film type, and other variables, respiration rate was studied at various storage conditions. The validity of the model was tested experimentally by observing actual atmospheric changes inside packages. It is concluded that the strategy developed is of use in designing dynamic gas exchange MAP systems, and also has potential uses in similar agricultural products.

  • PDF

Cross-Linked Collagen Scaffold from Fish Skin as an Ideal Biopolymer for Tissue Engineering

  • Biazar, Esmaeil;Kamalvand, Mahshad;Keshel, Saeed Heidari;Pourjabbar, Bahareh;Rezaei-Tavirani, Mustafa
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.186-192
    • /
    • 2022
  • Collagen is one of the most widely used biological materials in medical design. Collagen extracted from marine organisms can be a good biomaterial for tissue engineering applications due to its suitable properties. In this study, collagen is extracted from fish skin of Ctenopharyngodon Idella; then, the freeze drying method is used to design a porous scaffold. The scaffolds are modified with the chemical crosslinker N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) to improve some of the overall properties. The extracted collagen samples are evaluated by various analyzes including cytotoxicity test, SDS-PAGE, FTIR, DSC, SEM, biodegradability and cell culture. The results of the SDS-PAGE study demonstrate well the protein patterns of the extracted collagen. The results show that cross-linking of collagen scaffold increases denaturation temperature and degradation time. The results of cytotoxicity show that the modified scaffolds have no toxicity. The cell adhesion study also shows that epithelial cells adhere well to the scaffold. Therefore, this method of chemical modification of collagen scaffold can improve the physical and biological properties. Overall, the modified collagen scaffold can be a promising candidate for tissue engineering applications.

CRISPR-Driven Genome Engineering for Chorismate- and Anthranilate-Accumulating Corynebacterium Cell Factories

  • Hye-Jin Kim;Si-Sun Choi;Eung-Soo Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1370-1375
    • /
    • 2023
  • In this study, we aimed to enhance the accumulation of chorismate (CHR) and anthranilate (ANT), key intermediates in the shikimate pathway, by modifying a shikimate over-producing recombinant strain of Corynebacterium glutamicum [19]. To achieve this, we utilized a CRISPR-driven genome engineering approach to compensate for the deletion of shikimate kinase (AroK) as well as ANT synthases (TrpEG) and ANT phosphoribosyltransferase (TrpD). In addition, we inhibited the CHR metabolic pathway to induce CHR accumulation. Further, to optimize the shikimate pathway, we overexpressed feedback inhibition-resistant Escherichia coli AroG and AroH genes, as well as C. glutamicum AroF and AroB genes. We also overexpressed QsuC and substituted shikimate dehydrogenase (AroE). In parallel, we optimized the carbon metabolism pathway by deleting the gntR family transcriptional regulator (IolR) and overexpressing polyphosphate/ATP-dependent glucokinase (PpgK) and glucose kinase (Glk). Moreover, acetate kinase (Ack) and phosphotransacetylase (Pta) were eliminated. Through our CRISPR-driven genome re-design approach, we successfully generated C. glutamicum cell factories capable of producing up to 0.48 g/l and 0.9 g/l of CHR and ANT in 1.3 ml miniature culture systems, respectively. These findings highlight the efficacy of our rational cell factory design strategy in C. glutamicum, which provides a robust platform technology for developing high-producing strains that synthesize valuable aromatic compounds, particularly those derived from the shikimate pathway metabolites.