• Title/Summary/Keyword: Biological activated carbon treatment

Search Result 109, Processing Time 0.023 seconds

Effect of Ozonation on Removal of Dissolved Organic Matter by Granular Activated Carbon Process (오존공정이 입상활성탄공정에서 용존유기물질의 제거에 미치는 영향)

  • Ahn, Hyo-Won;Chae, Seon-Ha;Wang, Chang-Keun;Lim, Jae-Lim
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.601-608
    • /
    • 2008
  • The objective of this study was to evaluate the effect of ozonation as pretreatment on the removal of dissolved or biodegradable organic matter(DOM or BOM), the variance of DOM fractionation, and microbial regrowth by pilot-scale granular activated carbon processes in which adsorption and biodegradability was proceeding due to long time operation. Regardless of point of ozonation applied, GAC processes with ozonation(i.e., Ozonation combined with GAC Filter-adsorber; Pre O$_3$ + F/A, Ozonation combined with GAC adsorber; Post O$_3$ + GAC) compared with GAC processes without ozonation(i.e., GAC Filter-adsorber; F/A, GAC adsorber; GAC) removed approximately 10 to 20% more of DOC, hydrophilic DOM(HPI), BDOC and AOC after long period of operation that biological activity was assumed to happen. Ozonation was not found to have a significant effect on the removal of DOC, but caused the decrease of AOC by approximately 20%. It was found that the fixed bacterial biomass on GAC media did not show a significant difference between the GAC with ozonation and GAC without ozonation as pre-treatment, whereas the HPC of column effluent was more biostable at Post O$_3$ + GAC compared with F/A or GAC.

Caffeine and Carbamazepine: Detection in Nakdong River Basin and Behavior under Drinking Water Treatment Processes (Caffeine과 Carbamazepine: 낙동강 수계에서의 검출 및 정수처리 공정에서의 거동)

  • Son, Hee-Jong;Yeom, Hoon-Sik;Jung, Jong-Moon;Jang, Seong-Ho;Kim, Han-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.837-843
    • /
    • 2012
  • The aims of this study were to investigated the occurrence of caffeine and carbamazepine in Nakdong river basin (8 mainstreams and 2 tributaries) and the behavior of caffeine and carbamazepine under drinking water treatment processes (conventional and advanced processes). The examination results showed that caffeine was detected at all sampling sites (5.4~558.5 ng/L), but carbamazepine was detected at five sampling sites (5.1~79.4 ng/L). The highest concentration level of caffeine and carbamazepine in the mainstream and tributaries in Nakdong river were Goryeong and Jinchun-cheon, respectively. These pharmaceutical products were completely removed when they were subject to conventional plus advanced processes of drinking water treatment processes. Conventional processes of coagulation, sedimentation and sand-filtration were not effective for their removal, while advanced processes of ozonation and biological activated carbon (BAC) filtration were effective. Among these pharmaceuticals, carbamazeoine was more subject to ozonation than caffeine.

Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process (정수처리공정상 염소소독부산물형성에 미치는 오존의 영향)

  • Seong, Nak Chang;Park, Hyeon Seok;Lee, Seong Sik;Lee, Yong Hui;Lee, Jong Pal;Yun, Tae Gyeong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.

Characterization of TCE-Degrading Bacteria and Their Application to Wastewater Treatment

  • Lee, Wan-Seok;Park, Chan-Sun;Kim, Jang-Eok;Yoon, Byung-Dae;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.569-575
    • /
    • 2002
  • Two bacterial strains capable of degrading trichloroethylene (TCE), isolated form soils contaminated with various chlorinated alkenes, were identified as Alcaligenes odorous N6 and Nocardia sp. Hl7. In addition, four KCTC strains, including three strains of Pseudomonas putida and one strain of Sphingomonas chlorophenolica, exhibited an ability to degrade toluene. A. odorans N6 and Nocardia sp. H17 degraded 84% of the initial amount of TCE in a basal salts medium (BSM), containing 0.2 mM TCE as the sole source of carbon and energy, in a day. The optimal pH for growth was within a range of 7.0-8.0. A mixed culture of the four toluene-degrading isolates degraded 95% of 0.2 mM TCE with 1.5 mM toluene as an inducer, whereas no TCE was degraded by the same mixture without an inducer. When a mixed culture of all 6 isolates was used, the degradation efficiency of 0.2 mM TCE was 72% without an inducer, in a day, and 82% with toluene as an inducer. In a continuous treatment, 1,000 mg/1 of TCE in an artificial wastewater was completely removed within 18 h when an activated sludge was used along with the microbial mixture, which was 27 h laster than when only an activated sludge was used. Accordingly, it would appear that such a microbial mixture could be effectively applied to the biological treatment of wastewater containing TCE with or without an inducer.

Removal of Dissolved Organic Matter by Ozone-biological Activated Carbon process (오존처리와 생물활성탄 공정에 의한 상수원수 중의 용존유기물 제거)

  • 이상훈;문순식;신종철;최광근;심상준;박대원;이진원
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2003
  • The removal yield of dissolved organic matter in drinking water by biological activated carbon (BAC) process was investigated. The tested processes wer raw water-AC process (BAC1), raw water-ozonation-BAC process (BAC2), and raw water-ozonation-coagulation/sedimentation-BAC process (BAC3). The amounts of organic matter was measured as dissolved organic carbon (DOC), ulta-violet radiation at 254 nm wavelength ($UV_{254}$), total nitrogen (T-N), ammonia nitrogen (NH_3$-N), and total phosphate (T-P). As a results, 30.7% DOC was removed by BAC2 process, which showed higher removal efficiency than BAC1 or BAC3 processes. The removal yield of $UV_{254}$ in BAC1, BAC2, and BAC3 processes were observed as 45.3%, 44.6%, 58.4%, respectively. And the removal yield of ammonia nitrogen were 66%, 81%, 29% in each BAC processes. The optimal empty bed contact time (EBCT) of BAC processes was estimated as 10 minute. This study has shown that BAC process combined with ozone treatment was efficient for removing dissolved organic matter in water.

Screening of Hemicellulose Oligosaccharides and Preparation of the Recipe for Modified MRS Medium by the Replacement of Carbon Source (Hemicellulose계열 올리고당 탐색 및 탄소원 대체에 의한 장내세균 생육활성용 신규 MRS배지의 조제)

  • Lee, Hee-Jung;Park, Gwi-Gun
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.272-276
    • /
    • 2008
  • Purification and some properties of Xylogone sphaerospora ${\beta}$-mannanase were reprevious previous paper. Locust bean gum galactomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 4 and 6 galactosyl mannooligosaccharides. For elucidate the structure of D.P 4 and 6 galactosyl mannooligosaccharides, sequential enzymatic action was performed. D.P 4 and 6 were identified as ${Gal^2}{Man_3}\;(6^2-mono-O-{\alpha}-D-galactopyranosyl-4-O-{\beta}-D-mannotriose)$ and ${Gal^2}{Man_5}\;(6^2-mono-O-{\alpha}-D-galacto- pyranosyl-4-O-{\beta}-D-mannopentaose)$. To investigate the effects of locust bean gum galactosyl mannooligosaccharides on in vitro growth of Bifidobacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 4 and D.P. 6 galactosyl mannooligosaccharides, respectively. B. longum and B. bifidum grew up to-fold and 6.6-fold more effectively by the treatment of D.P. 6 galactosyl mannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 6 was more effective than D.P. 4 galactosyl mannooligosaccharide on the growth of Bifidobacterium spp.

Removal of Ammonia Nitrogen and Reduction of THMs in Low Temperature by BAC Pilot Plant (BAC Pilot Plant 를 이용한 겨울철 암모니아성 질소 제거 및 THMs 변화)

  • Kang, Eun-Jo;Seo, Young-Jin;Lee, Won-Kwon;Chun, Pyoung-Hee;Lee, Ji-Hyung;Yoon, Jung-Hyo;Kim, Dong-Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.107-114
    • /
    • 1995
  • The raw drinking water quality is getting worse because of the winter drought and the conventional treatment system is'nt suitable to obtain the satisfied quality of water. So, the advanced water system, BAC(Biological Activated Carbon) process is said to be effective to remove dissolved organics and ammonia nitrogen. In our study, the BAC pilot plant using Nak-dong river water is tested in low temperature. Following results are found from the study. The ammonia nitrogen removal rate of BAC system using wood-based carbon (PICABIOL) was 99% in $6^{\circ}C$ temperature. Chlorine dosage in wood-based BAC effluent was reduced to 67% of that in sand filtered wate. It resulted from the removal of ammonia nitrogen. Also, THM formed by chlorine addition in wood-based BAC effluent was decreased to 65% of that in sand filtered water. In the case of dual-filter, the removal efficiency of ammonia nitrogen was increased 30% more than in conventional sand filter. According to this result, the ammonia nitrogen load to BAC system could be lessened by the use of dual-filter.

  • PDF

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

Adsorption and Biological Properties of Ni-treated PAN Based Activated Carbon Fiber (Ni가 처리된 PAN계 활성탄소섬유의 흡착특성과 생물학적 특성)

  • Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.194-199
    • /
    • 2000
  • The study on the adsorption, the surface properties and the antibacterial effects of the Ni-treated PAN based activated carbon fibers was carried out. In the adsorption study on the Ni-treated PAN based ACFs, Type I isotherms for N1-N3 and Type II-Type III isotherms for N4-N6 were obtained, respectively. Futhermore, their adsorbed volumes slowly were decreased with the increase in the mole concentration of Ni on the treated PAN based ACFs. From the BET equation, the specific surface areas of the Ni-treated PAN based ACFs were in the range of $692.58-895.24m^2/g$. The micropore volumes obtained from ${\alpha}_s$-method using common-t value were $0.19-0.56cm^3/g$. The surfaces of PAN based ACFs partially blocked by metal after the treatment were observed from the SEM micrographs. Finally, from the antibacterial effects using Shake flask method against E. coli, the percentage of the effects was 92.5-100% and the antibacterial effect was increased with the increase in mole concentration of Ni treated.

  • PDF

Effective Removal of Gaseous BTEX Using VPB During Treatment of Briny Produced Water (VPB를 이용한 효율적인 Gas 상태의 BTEX 제거에 관한 연구)

  • Kwon, Soondong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.167-177
    • /
    • 2011
  • Billions of barrels of briny produced water are generated in the United States every year during oil and gas production. The first step toward recovering or reusing this water is to remove the hazardous organics dissolved in the briny produced water. Biological degradation of hazardous volatile compound could be possible regardless of salinity if they were extracted from briny water. In the current work, the effectiveness of a vapor phase biofilter to degrade the gas-phase contaminants (benzene, toluene, ethylbenzene and xylenes, BTEX) extracted from briny produced water was evaluated. The performance of biofilter system responded well to short periods when the BTEX feed to the biofilter was discontinued. To challenge the system further, the biofilter was subjected to periodic spikes in inlet BTEX concentration as would be expected when it is coupled to a Surfactant-Modified Zeolite (SMZ) bed. Results of these experiments indicate that although the BTEX removal efficiency declined under these conditions, it stabilized at 75% overall removal even when the biofilter was provided with BTEX-contaminated air only 8 hours out of every 24 hours. Benzene removal was found to be the most sensitive to time varying loading conditions. A passive, granular activated carbon bed was effective at attenuating and normalizing the peak BTEX loadings during SMZ regeneration over a range of VOC loads. Field testing of a SMZ bed coupled with an activated carbon buffering/biofilter column verified that this system could be used to remove and ultimately biodegrade the dissolved BTEX constituents in briny produced water.