• Title/Summary/Keyword: Biological activated carbon (BAC)

Search Result 64, Processing Time 0.029 seconds

Performance of Backwashing Process in Biological Activated Carbon Column (생물활성탄접촉조에서 역세척 공정의 성능)

  • Lee, Gangchoon;Yoon, Taekyung;Moon, Byunghyun;Noh, ByeongIl
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1082-1087
    • /
    • 2006
  • BAC backwashing process in ozone-BAC advanced water treatment process was experimentally studied. The operation and performance of backwashing were evaluated by measuring the effects of water temperature and water input rate on the backwashing interval and duration, and also the change of the amounts of biofilm and HPC in treated water before and after backwashing. The experiments were carried out with the pilot scale test module built in a existing water treatment plant, and the following results were obtained. Longer backwashing time than that of design operating condition was needed for satisfying the suitable turbidity of washing water effluent. Depending on water temperature, 7 days of backwashing cycle was recommended for the period lower than $15^{\circ}C$, and 10 days for the period higher than $15^{\circ}C$. After backwashing, the amounts of biofilm and HPC decreased to 1/10 and 80%, respectively.

Comparison of Bacterial Biomass and Community of Granular Activated Carbon with or without UV Pre-treatment Process (UV 전처리 유무에 따른 입상활성탄의 세균 생체량 및 군집 구조 비교)

  • Lim, Jaewon;Kim, Seoyong;Kim, Jeongyong;Kim, Tae Ue
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.12
    • /
    • pp.64-76
    • /
    • 2017
  • Biolgical activated carbon (BAC) processes are known to effectively remove organic pollutants in raw water, and biomass and attached bacterial species play an important role in removing process. In the present study, changes of bacterial biomass in granular activated carbon (GAC) process according to the depth and operating period were investigated. In addition, changes of bacterial biomass were also confirmed after UV exposure prior to the GAC process. Results from this this study showed that the bacterial biomass was decreased dependently according to the depth of GAC process. In case of UV pre-treatment, the bacterial biomass was declined significantly over the period of operation. However, changes in bacterial community were not shown during operation period without UV pre-treatment process. In conclusion, findings from this study may provide the useful information about the management of BAC process.

Removal characteristics of surfactant by ozone and biological activated carbon (오존과 생물활성탄에 의한 합성세제 제거 특성 연구)

  • Ku, Suk Hyen;Kwon, Jin Hyoung;Lee, Jae In;Lim, Jin Kyung;Kim, Dong Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.99-107
    • /
    • 2000
  • In this article, the removal of surfactant by ozone and BAC was studied. Batch and pilot tests were carried out for these studies. In batch tests, efficiency of ozone oxidation process was evaluated for LAS(Linear Alkylbenzen Sulfonate) and SLS(Sodium Lauryl Sulfate) removal. Under oxidant conditions, the removal of LAS was more effective than that of SLS. The removal of surfactant was more enhanced with increasing pH in oxidant systems. Pilot tests are carried out with BAC single process and ozone oxidation/BAC combined process. The removal of LAS was more effective in ozone oxidation/BAC combined process than BAC single process about 10-20%. In the case of SLS, the efficiency of BAC single process was similar to that of ozone oxidation BAC combined process. According to temperature, the removal efficiency of SLS changed from 70% to 95% and initial concentration of surfactant had no effects on removal efficiency of SLC under applied temperature above $15^{\circ}C$.

  • PDF

Variation of Pollutant Removal Efficiency and Backwashing Effect of BAC Basin in Advanced Water Treatment Processes (고도정수공정에서 오염물질 제거효율 변화특성과 BAC조의 역세척에 따른 영향)

  • Park, Soo-Yee;Lee, Sang-Bong;Sin, Sang-Min;Jun, Chang-Jea;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • In this paper, the property of influent water and variations of removal efficiencies in each unit processes were studied based on the experiment data from the advanced water treatment plant in a city of Korea. The microbial species in the biological activated carbon(BAC) after backwashing of activated carbon filtration tank(ACFT) were also identified. The property and the removal efficiencies were evaluated by considering 8-9 items. The variations of 4 items were investigated from the influent and effluent of ACFT. SEM recording were conducted on BAC samples before and after backwashing. And the existence of attached microorganisms were identified through HPC(Heterotrophic Plate Counter) investigation. For the property of influent water, the concentrations of most items were maintained in the constant ranges, some items had seasonal properties. For the removal efficiencies, there were some items showing similar monthly-pattern and increasing with time, other items decreasing at the ozone contactor. Through these investigations, it was possible to distinguish the target items, which were removed by the advanced processes. The existence of microorganisms in ACFT could be predicted based on the variation curve of NH$_3$-N, and this fact were proved by SEM and HPC.

Removal Characteristics of Sulfonamide Antibiotic Compounds in Biological Activated Carbon Process (생물활성탄 공정에서의 Sulfonamide계 항생물질 제거특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In this study, the effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of sulfonamide 5 species in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BACs, increasing EBCT or increasing water temperature increased the sulfonamide 5 species removal in BAC columns. In the coal-based BAC columns, sulfachloropyridazine (SCP), sulfamethazine (SMT) and sulfathiazole (STZ) removal efficiencies were 30~80% and sulfadimethoxine (SDM), sulfamethoxazole (SMX) removal efficiencies were 18~70% for 5~20 min EBCT at $25^{\circ}C$. The kinetic analysis suggested a first-order reaction model for sulfonamide 5 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for sulfonamide 5 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of sulfonamide 5 species ranging from 0.0094~0.0718 $min^{-1}$ and 9.7 to 73.7 min various water temperaturs and EBCTs in this study could be used to assist water utilities in designing and operating BAC filters for sulfonamide antibiotic compounds removal.

Pretreatment by the Process of BAC Fluidized Bed to produce the Biologically Stable Drinking Water (생물활성탄 유동상법에 의한 상수원수의 생물학적 전처리공정)

  • 우달식;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.38-46
    • /
    • 1998
  • This study was to investigate the effects of carbon loadings, temperature and expansion ratio on the waterborne organic removal by the biologically active GAC fluidized bed on a laboratory scale. The raw water to be treated comes from midstream of Han river. BACFB(Biological Activated Carbon Fluidized Bed) process was very effective to remove the biodegradable fraction of dissolved organic matter. The more carbon weighed, the more DOC removed in a range from 16.7 to 133.3 g/l. DOC and UV$_{254}$ were removed more than 40% and 20% above 20$\circ$C respectively. Between 5$\circ$C and 10$\circ$C, DOC and UV$_{254}$ were eliminated about 30% and 15% respectively. In general, even if the temperature was higher, DOC removal was a little sensitive, probably influenced by GAC's residual adsorption capacity. UV$_{254}$ reduction was little fluctuated in accordance with water temperature. The gradual increase in expansion ratio from 10% to 75% didn't greatly affect on the removal of DOC and UV$_{254}$. The expansion ratio, therefore, is not a key factor over the critical expansion ratio.

  • PDF

Analysis of Attached Bacterial Community of Biological Activated Carbon Process Using FISH (FISH 기법을 이용한 생물활성탄 공정에서의 운전기간별 부착 박테리아 군집변화 분석)

  • Son, Hyeng-Sik;Son, Hee-Jong;Park, Geun-Tae;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.25-35
    • /
    • 2013
  • The concentration of organic compounds was analyzed at each step of BAC process though $BDOC_{total/rapid/slow}$. Further, bacteria communities and biomass concentrations measured FISH and ATP methods were analyzed. The bed volume (BV) of steady state is different from that of based on assessment of organic compounds removal. Bed volumes in DOC, $BDOC_{rapid}$ and $BDOC_{total/slow}$ removal at steady state were around 27,500 (185.8 day), 15,000 (101.4 day) and 32,000 (216.2 day), respectively. A biomass didn't change after the bed volume reached 22,500 (152.0 day) according to analyzing ATP concentration of bacteria. The concentration of ATP was 2.14 ${\mu}g/g$ in BV 22,500 (152.0 day). The total bacterial number was $4.01{\pm}0.4{\times}10^7$ cells/g at the bed volume 1,150 (7.8 day) (the initial operation) and the number of bacteria was $9.27{\pm}0.2{\times}10^9$ at the bed volume 58,560 395.7 day) that increased more than 200 times. Bacterial uptrend was reduced and bacterial communities were stabilized since BV 18,720 (126.5 day). When BV were 1,150 (7.8 day), 8,916 (60.2 day), 18,720 (126.5 day), 31,005 (209.5 day), 49,632 (335.3 day), 58,560 (395.7 day), a proportion of total bacteria for the Eubacteria were 60.1%, 66.0%, 78.4%, 82.0%, 81.3% respectively. ${\gamma}$-Proteobacteria group was the most population throughout the entire range. The correlation coefficient ($r^2$) between Eubacteria biomass and ATP concentration was 0.9448.

The Removal Characteristics of THM Formation Potential According to the Changes of Bromide Concentration of Influent Water in BAC Process (생물활성탄 공정에서 계절별 유입수의 $Br^-$ 농도변화에 따른 THM 생성능 구성종별 제거 특성)

  • Son, Hee-Jong;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.378-381
    • /
    • 2009
  • The purpose of this research is the evaluation of removal efficiency of THMFP in BAC. The changes of four types of THMFP and total THMFP were examined in the influent and effluent of BAC filter from March to December in 2008. It turned out that the amounts of brominated THMFP were obviously higher in winter and autumn compared to the spring and summer, which also resulted in an increase of the total-THMFP levels during winter and autumn. In addition, long-term running of BAC filter shows the good removal function of chloroform formation potential, but not brominated THMFP; with further bromination, this function was declined, as it shows the formation of bromoform in BAC filter during October and December. These results were caused by changing of the proportion of $Br^-$/DOC.

Investigating of Nitrosamines in Small tributary rivers, Sewage Tretment Plants and Drinking Water Treatment Plants (하천수 및 상하수도처리공정에서의 니트로사민류 조사)

  • Kim, Gyunga;Roh, Jaesoon;Bin, Jaehun;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.446-453
    • /
    • 2010
  • This study was investigated nine nitrosamines in small tributary rivers, sewage treatment plants (STPs) and drinking water treatment plants. They are N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopyrrolidine (NPYR), N-nitrosodi-n-propylamine (NDPA), N-nitrosomorpholine (NMOR), N-nitrosopiperidine (NPIP), N-nitrosodi-n-butylamine (NDBA) and N-nitrosodiphenylamine (NDPHA). The nine nitrosamines were analyzed by gas chromatography mass spectrometry (GC/MS) using solid phase extraction (SPE) with a coconut charcoal cartridge. Among the nine nitrosamines, NDMA, NMEA, NDEA, NDPA NDBA and NDPHA were detected in small tributary rivers and sewage tretment plants. In small tributary rivers, NDMA, NMEA, NDEA, NDPA, NDBA and NDPHA were obtained as ND~16.4 ng/L, ND~17.7 ng/L, ND~102.4 ng/L, ND~455.4 ng/L, ND~330.1 ng/L and ND~161.0 ng/L, respectively. Also NDMA, NMEA, NDEA, NDPA and NDBA were investigated ND~821.4 ng/L, 22.5~55.4 ng/L, 53.2~588.5 ng/L, ND~56.6 ng/L and ND~527.9 ng/L in STPs, respectively. In drinking water treatment plants, NMEA and NDEA concentration were increased to as high as 38.8 ng/L after ozonation process. However nitrosamines were decreased subsequent biological activated carbon (BAC) treatment process. It was supposed that nitrosamines were formed by $O_3$ oxidation and were removed by biodegradation of BAC.

The Characteristics of Microbial Community for Biological Activated Carbon in Water Treatment Plant (생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성)

  • Son, Hee-Jong;Park, Hong-Ki;Lee, Soo-Ae;Jung, Eun-Young;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1311-1320
    • /
    • 2005
  • The purpose of this research is to survey characteristics of microbial community and the removal efficiency of organic materials for biological activated carbon in water treatment plant. Coal based activated carbon retained more attached bacterial biomass on the surface of the activated carbon than the other activated carbon with operating time and materials. The heterotrophic plate count(HPC), eubacteria(EUB) and 4,6-diamidino-2-phenylindole(DAPI) counts were ranged from $0.95{\times}10^7$ to $52.4{\times}10^7$ CFU/g, from $3.8{\times}10^8$ to $134.2{\times}10^8$ cells/g and from $7.0{\times}10^8$ to $250.2{\times}10^8$ cells/g, respectively. The biomass of EUB and DAPI appeared to be much more $10^2$ than HPC, which were increasing in bed volume of 20,000 at the stage of steady-state. The change of microbial community by analyzing fluorescent in situ hybridization(FISH) method with rRNA-targeted oligonucleotide probes, the dominant group was $\alpha$-proteobacteria($\alpha$ group) and high G+C content bacteria(HGC) the lowest distributing rate before reaching the bed volume of 20,000. After reaching the bed volume of 20,000, $\alpha$ group and other groups of bacteria became decreased, on the other hand, the proportion of both $\beta$-proteobacteria($\beta$ group) and $\gamma$-proteobacteri($\gamma$ group) were increasing. Coconut and wood based activated carbons had similar trend with coal based activated carbon, but the rate of $\alpha$ group on coal based activated carbon had gradually increased. Bacterial production with the operating period appeared highest in coal based activated carbon at the range of $1.2{\sim}3.4\;mg-C/m^3{\cdot}h$ while the coconut and wood based activated carbon were ranged from 1.1 to 2.6 $mg-C/m^3{\cdot}h$ and from 0.7 to 3.5 $mg-C/m^3{\cdot}h$ respectively. The removal efficiency of assimilable organic carbon(AOC) showed to be highly correlated with bacterial production. The correlation coefficient between removal efficiency of AOC and bacterial production were 0.679 at wood based activated carbon, 0.291 at coconut based activated carbon and 0.762 at coal based activated carbon, respectively.