• Title/Summary/Keyword: Biological Sequence Database

Search Result 92, Processing Time 0.027 seconds

Genes expression monitoring using cDNA microarray: Protocol and Application

  • Muramatsu Masa-aki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2000.11a
    • /
    • pp.31-41
    • /
    • 2000
  • The major issue in the post genome sequencing era is determination of gene expression patterns in variety of biological systems. A microarray system is a powerful technology for analyzing the expression profile of thousands of genes at one experiment. In this study, we constructed cDNA microarray which carries 2,304 cDNAS derived from oligo-capped mouse cDNA library. Using this hand-made microarray we determined gene expression in various biological systems. To determine tissue specific genes, we compared Nine genes were highly-expressed in adult mouse brain compared to kidney, liver, and skeletal muscle. Tissue distribution analysis using DNA microarray extracted 9 genes that were predominantly expressed in the brain. A database search showed that five of the 9 genes, MBP, SC1, HiAT3, S100 protein-beta, and SNAP25, were previously known to be expressed at high level in the brain and in the nervous system. One gene was highly sequence similar to rat S-Rex-s/human NSP-C, suggesting that the gene is a mouse homologue. The remaining three genes did not match to known genes in the GenBank/EMBL database, indicating that these are novel genes highly-expressed in the brain. Our DNA microarray was also used to detect differentiation specific genes, hormone dependent genes, and transcription-factor-induced genes. We conclude that DNA microarray is an excellent tool for identifying differentially expressed genes.

  • PDF

Web Services Based Biological Data Analysis Tool

  • Kim, Min Kyung;Choi, Yo Hahn;Yoo, Seong Joon;Park, Hyun Seok
    • Genomics & Informatics
    • /
    • v.2 no.3
    • /
    • pp.142-146
    • /
    • 2004
  • Biological data and analysis tools are accumulated in distributed databases and web servers. For this reason, biologists who want to find information from the web should be aware of the various kinds of resources where it is located and how it is retrieved. Integrating the data from heterogeneous biological resources will enable biologists to discover new knowledge across the specific domain boundaries from sequences to expression, structure, and pathway. And inevitably biological databases contain noisy data. Therefore, consensus among databases will confirm the reliability of its contents. We have developed WeSAT that integrates distributed and heterogeneous biological databases and analysis tools, providing through Web Services protocols. In WeSAT, biologists are retrieved specific entries in SWISS-PROT/EMBL, PDB, and KEGG, which have annotated information about sequence, structure, and pathway. And further analysis is carried by integrated services for example homology search and multiple alignments. WeSAT makes it possible to retrieve real time updated data and analysis from the scattered databases in a single platform through Web Services.

Genetic localization of epicoccamide biosynthetic gene cluster in Epicoccum nigrum KACC 40642

  • Choi, Eun Ha;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • Epicoccum nigrum produces epipyrone A (orevactaene), a yellow polyketide pigment. Its biosynthetic gene cluster was previously characterized in E. nigrum KACC 40642. The YES liquid culture of this strain revealed high-level production of epicoccamide (EPC), with an identity that was determined using liquid chromatography-mass spectrometry analysis and molecular mass search using the SuperNatural database V2 webserver. The production of EPC was further confirmed by compound isolation and nuclear magnetic resonance spectroscopy. EPC is a highly reduced polyketide with tetramic acid and mannosyl moieties. The EPC structure guided us to localize the hypothetical EPC biosynthetic gene cluster (BGC) in E. nigrum ICMP 19927 genome sequence. The BGC contains genes encoding highly reducing (HR)-fungal polyketide synthase (fPKS)-nonribosomal peptide synthetase (NRPS), glycosyltransferase (GT), enoylreductase, cytochrome P450, and N-methyltrasnferase. Targeted inactivation of the HR-fPKS-NRPS and GT genes abolished EPC production, supporting the successful localization of EPC BGC. This study provides a platform to explore the hidden biological activities of EPC, a bolaamphiphilic compound.

Identification of highly pathogenic Beauveria bassiana strain against Pieris rapae larvae

  • DING, Jun-nan;LAI, Yong-cai
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.339-347
    • /
    • 2018
  • Seven different strains of Beauveria bassiana were used in a bioassay on Pieris rapae larvae. The results showed that an B. bassiana strain showed relatively high pathogenicity towards P. rapae larvae. The adjusted mortality rate was 92.86 %, and the infection rate was 85.71 % in 10 days post inoculation. Molecular identification was performed to identify the unknown strain. Internal Transcribed Spacer sequence analysis showed that the polymerase chain reaction amplicon length of the unknown strain of Beauveria sp. was 573 bp, and sequence similarity to the known B. bassiana sequences in the NCBI database was 99 %. The B. bassiana strain was named Bb01. The changes of proteins and PPO of P. rapae larvae infected by B. bassiana Bb01 strain at different times was determined. The activity of PPO increased in 1-6 d and decreased in 7 d again after inoculation. The B. bassiana invaded into the insect body affected the balance of the proteins and PPO.

CGRID construction based on Etherboot technology and its utilization to sequence analysis (Etherboot 기반의 CGRID 구축과 서열분석에의 적용)

  • Kim Tae-Kyung;Cho Wan-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.195-208
    • /
    • 2005
  • Recently, amount of the data such as sequences is being increased rapidly due to deploying computational technique and advance of experiment tools in the biological areas. In bioinformatics, it is very significant to extract the knowledge from such huge biological data. Sequence comparisons are most frequently used to predict the function of the genes or proteins. However it takes so much time to process the persistently increasing data In this paper, we propose hardware-based grid, CGRID(Chungbuk National University GRID), to improve performance and complement existing middleware-only approach and apply it in the sequence comparison. Hardware-based approach is easy to construct, maintain, and manage the grid as not requiring the software installation individually for every node. We reduce orthologous database construction time from 33 weeks to just a week. Furthermore, CGRID guarantees that the performance increases proportionally as adding the nodes.

  • PDF

A Study on Design of Schema Integration based Biological Information Retrieval System (스키마 통합 기반 생명정보 검색시스템(BIRS) 설계에 관한 연구)

  • Han, Keon;Lee, Sang-Ho;Ahn, Bu-Young
    • Journal of Information Management
    • /
    • v.40 no.1
    • /
    • pp.217-234
    • /
    • 2009
  • In computer-based virtual lab, a bioscience researcher who wants to obtain bio information first uses a biodiversity-related database to retrieve information on species, ecology and distribution of an organism. The researcher also needs to access gene/protein databases such as GenBank or PDB to find information on the organism's genetic sequence and protein structure. Furthermore, the researcher should search for academic papers containing the information on the organism so that his research is based on comprehensive and accurate information. This series of activities often undermines research efficiency as it takes a lot of time and causes inconvenience on the part of researchers. To solve such inconvenience, we analyzed various methods for integrated search and chosen schema integration. In addition, we analyzed each databases and extracted metadata for designing schema integration. This paper introduces a biological information retrieval system(BIRS) using schema integration and it's interface that will increase research efficiency for bioscience.

Comparative Analysis of Expressed Sequence Tags from Flammulina velutipes at Different Developmental Stages

  • Joh, Joong-Ho;Kim, Kyung-Yun;Lim, Jong-Hyun;Son, Eun-Suk;Park, Hye-Ran;Park, Young-Jin;Kong, Won-Sik;Yoo, Young-Bok;Lee, Chang-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.774-780
    • /
    • 2009
  • Flammulina velutipes is a popular edible basidiomycete mushroom found in East Asia and is commonly known as winter mushroom. Mushroom development showing dramatic morphological changes by different environmental factors is scientifically and commercially interesting. To create a genetic database and isolate genes regulated during mushroom development, cDNA libraries were constructed from three developmental stages of mycelium, primordium, and fruit body in F. velutipes. We generated a total of 5,431 expressed sequence tags (ESTs) from randomly selected clones from the three cDNA libraries. Of these, 3,332 different unique genes (unigenes) were consistent with 2,442 (73%) singlets and 890 (27%) contigs. This corresponds to a redundancy of 39%. Using a homology search in the gene ontology database, the EST unigenes were classified into the three categories of molecular function (28%), biological process (29%), and cellular component (6%). Comparative analysis found great variations in the unigene expression pattern among the three different unigene sets generated from the cDNA libraries of mycelium, primordium, and fruit body. The 19-34% of total unigenes were unique to each unigene set and only 3% were shared among all three unigene sets. The unique and common representation in F. velutipes unigenes from the three different cDNA libraries suggests great differential gene expression profiles during the different developmental stages of F. velutipes mushroom.

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

  • Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.227-247
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.

Construction of a Full-length cDNA Library from Korean Stewartia (Stewartia koreana Nakai) and Characterization of EST Dataset (노각나무(Stewartia koreana Nakai)의 cDNA library 제작 및 EST 분석)

  • Im, Su-Bin;Kim, Joon-Ki;Choi, Young-In;Choi, Sun-Hee;Kwon, Hye-Jin;Song, Ho-Kyung;Lim, Yong-Pyo
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • In this study, we report the generation and analysis of 1,392 expressed sequence tags (ESTs) from Korean Stewartia (Stewartia koreana Nakai). A cDNA library was generated from the young leaf tissue and a total of 1,392 cDNA were partially sequenced. EST and unigene sequence quality were determined by computational filtering, manual review, and BLAST analyses. Finally, 1,301 ESTs were acquired after the removal of the vector sequence and filtering over a minimum length 100 nucleotides. A total of 893 unigene, consisting of 150 contigs and 743 singletons, was identified after assembling. Also, we identified 95 new microsatellite-containing sequences from the unigenes and classified the structure according to their repeat unit. According to homology search with BLASTX against the NCBI database, 65% of ESTs were homologous with known function and 11.6% of ESTs were matched with putative or unknown function. The remaining 23.2% of ESTs showed no significant similarity to any protein sequences found in the public database. Annotation based searches against multiple databases including wine grape and populus sequences helped to identify putative functions of ESTs and unigenes. Gene ontology (GO) classification showed that the most abundant GO terms were transport, nucleotide binding, plastid, in terms biological process, molecular function and cellular component, respectively. The sequence data will be used to characterize potential roles of new genes in Stewartia and provided for the useful tools as a genetic resource.

Screening of Fruiting Body Formation-Specific Genes from the Medicinal Mushroom Cordyceps militaris MET7903 (약용버섯번데기 동충하초 MET7903의 특이적 자실체형성 유전자의 선별)

  • Yun, Bangung;Chung, Ki-Chul
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.145-148
    • /
    • 2004
  • This study was carried out to screen the fruiting body formation-specific genes from the medicinal mushroom Cordyceps militaris. A cDNA synthesized using total RNA from 4 stages of mushroom development, mycelium, primordium, immature fruiting body and mature fruiting body. Differential expression gene screening was performed by DD-PCR(Differential Display Arbitrary Primer PCR) with cDNA, we sequenced partial 6 genes using pGEM cloning vector. The DNA Sequence of the six DD-PCR products derived from differentially expressed genes was compared to that in the GenBank database by using the NCBI BLAST search to identify similarities to known sequences. Sequence analysis showed that six of DD-PCR products have unknown sequence.

  • PDF