• Title/Summary/Keyword: Biological Nutrient Removal

Search Result 169, Processing Time 0.031 seconds

Modeling and Dynamic Simulation for Biological Nutrient Removal in a Sequencing Batch Reactor(I) (연속 회분식 반응조에서 생물학적 영양염류 제거에 대한 모델링 및 동적 시뮬레이션(I))

  • Kim, Dong Han;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.42-55
    • /
    • 1999
  • A mathematical model for biological nutrient removal in a sequencing batch reactor process, which is based on the IAWQ Activated Sludge Model No. 2 with a few modifications, has been developed. Twenty water quality components and twenty three kinetic equations are incorporated in the model. The model is structured in the matrix form based on the law of mass conservation using stoichiometry and kinetic equations. Stoichiometric coefficients and kinetic parameters included in the model equations are chosen from the literature. A multistep predictor-corrector algorithm of variable step-size is adopted for solving the vector nonlinear ordinary differential equations. The simulation for experimental results is conducted to evaluate the validity of the model and to calibrate coefficients and parameters. The simulation using the model well represents the experimental results from laboratory. The mathematical model developed in this study may be utilized for the design and operation of a sequencing batch reactor process under the steady and unsteady-state at various environmental conditions.

  • PDF

A Study on the Organic, Nitrogen and Phosphorus Removal in (AO)$_2$ SBR and $A_2O$ SBR ((AO)$_2,$ SBR과 $A_2O$ SBR의 유기물, 질소 및 인의 제거에 관한 연구)

  • Park Young-Seek;Woo Hyung-Taek;Kim Dong-Seog
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.340-348
    • /
    • 2005
  • Laboratory scale experiments were conducted to compare the performance of two types of sequencing batch reactor(SBR) systems, anoxic-oxic-anoxic-oxic $((AO)_2)$ SBR and anoxic-oxic-anoxic $(A_2O)$ SBR on the biological nitrogen and phosphorus removal. Also, the profiles of DO and pH in reactors were used to monitor the biological nutrient removal in two SBRs. The break point in the pH and DO curves at the oxic period coincided with the end of nitrifying activity at about 1 h 30 min in oxic phase, and the change in pH appears to be related to nitrate concentration. The TOC removal efficiency in $A_2O$ SBR was higher than that in $(AO)_2$ SBR. The denitrification was completed at the influent period. The 2nd non-aeration and aeration periods were not necessary for the nitrogen and phosphorus removal because of the low influent TOC concentration in this study. The release and uptake of phosphorus in $AO_2$ SBR was much higher than that in $(AO)_2SBR.$ In order to uptake more phosphorus, the 1st aeration period in $A_2O$ SBR should be prolonged.

Removal of Simultaneously Biological Organic, Nitrogen, and Phosphorus Removal in Sequencing Batch Reactors using Night-soil (연속회분식 반응기(Sequencing Batch Reactor)를 이용한 분뇨중 유기물과 질소 및 인의 동시제거)

  • 한기백;박동근
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.697-709
    • /
    • 1997
  • Sequencing Batch Reactor(SBR) experiments for organics and nutrients removal have been conducted to find an optimum anaerobic/anoxic/aerobic cycling time and evaluate the applicability of oxidation-reduction potential(ORP) as a process control parameter. In this study, a 61 bench-scale plant was used and fed with night-soil wastewater in K city which contained TCODcr : 10, 680 mg/l, TBm : 6, 893 mg/l, $NH_4^+-N$ : 1, 609 mg/l, $PO_4^{3-}-P$ : 602 mg/l on average. The cycling time In SBRs was adjusted at 12 hours and 24 hours, and then certainly included anaerobic, aerobic and inoxic conditions. Also, for each cycling time, we performed 3 series of experiment simultaneously which was set up 10 days, 20 days and 30 days as SRT From the experimental results, the optimum cycling time for biological nutrient removal with nlght-soil wastewater was respctively 3hrs, 5hrs, 3hrs(anaerobic-aerobic-anoxic), Nitrogen removal efficiency was 77.9%, 77.9%, 81.7% for each SRT, respectively. When external carbon source was fed in the anoxic phase, ORP-bending point indicating nitrate break point appeared clearly and nitrogen removal efficiency increased as 96.5%, 97.1%, 98.9%. Phosphate removal efficiency was 59.8%, 64.571, 68.6% for each SRT. Also, we finded the applicability of ORP as a process control parameter in SBRs.

  • PDF

Sewage Treatment Using a Modified DNR Process (수정 DNR 공정을 이용한 하수처리)

  • Choi, Jin-Taek;Nam, Se-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.446-451
    • /
    • 2008
  • In this study, the removal characteristics of organic components and nutrients of sewage taken from the Suwon area were investigated in a lab-scale modified DNR (Daewoo Nutrient Removal) process. The modified DNR process consisted of a sludge denitrification tank, an anaerobic tank, an anoxic tank, an aerobic tank, a secondary anoxic tank and a secondary aerobic tank. The proposed process with the average C/N ratio of 3.5 was performed for the sewage treatment. The results were compared with other existing DNR processes. The organic fractions in sewage were analyzed by measuring the oxygen uptake rate. The resulting removal efficiencies of SS, BOD, COD, TN and TP were 93.1%, 95.5%, 86.1%, 67.8% and 80.6%, respectively.

Nutrient Removal Characteristics on Organic Material Loadings in Submerged Flat Sheet Type Sequencing Batch Membrane Reactor (침지식 평판형 연속회분식 박반응기에서 유입 유기물 부하의 변화에 따른 영양염류의 제거 특성)

  • Kim, Seung-Geon;Lee, Ho-Won;Kang, Yeung-Joo
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.241-248
    • /
    • 2010
  • The effect of organic material loadings on nutrient removal characteristics were investigated in sequencing batch reactor, in which a flat sheet type microfiltration membrane with a pore size of $0.4\;{\mu}m$ was submerged. Three organic concentrations of 200 mg/L (Run-1), 400 mg/L (Run-2) and 800 mg/L (Run-3) were carried out continuously to identify their effect on the filtration performance and nutrient removal. The removal efficiencies of T-N and T-P were increased with the increase of COD/N and COD/P. The T-N removal efficiencies of Run-1, Run-2 and Run-3 were 28.1, 32.6 and 90.4%, the average concentrations of T-N in permeate were 32.0, 30.0, and 4.3 mg/L, respectively. The T-P removal efficiencies of Run-1, Run-2 and Run-3 were 13.6, 35.3 and 93.1%, the average concentrations of T-P in permeate were 3.11, 2.33, and 0.25 mg/L, respectively.

Stability Evaluation of Phased Isolation Intra-Clarifier Ditch Process on Short-Term Hydraulic Shock Loading (단기 수리학적 충격부하시 침전지 내장형 상분리 산화구공정의 처리 안정성 평가)

  • Hong, Ki-Ho;Chang, Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.791-799
    • /
    • 2005
  • The phased isolation intra-clarifier ditch system used in this study is a simplified novel process enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater in terms of elimination of additional pre-anaerobic reactor, external clarifier, recycle of sludge, and nitrified effluent recirculation by employing intrachannel clarifier. Laboratory-scale phased isolation ditch system was used to assess the treatability on municipal wastewater. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31days, and cycle times of 2~8hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 70~84%, and 65~90%, respectively. The rainfall in Korea is generally concentrated in summer because of site-specific characteristics. Especially, the wet season has set in on June to August. In combined sewers, seasonal variations are primarily a function of the amount of stormwater that enters the system. In order to investigate the effect of hydraulic shock loading on system performance, the laboratory-scale system was operated at an HRT of 6hours (two times of influent flowrate) during two cycles (8hours). The system performance slightly decreased by increasing of influent flowrate and decreasing of system HRT. Nitrification efficiency and TN removal were slightly decreased by increasing of influent flowrate (decreasing of system HRT), whereas, the denitrification was not affected by hydraulic shock loading. However, the higher system performance could be achieved again after four cycles. Thus, the phased isolation technology for enhanced biological nutrient removal in medium- and small-scale wastewater treatment plants suffering fluctuation of influent quality and flowrate.

Community Analysis of Nitrite-Oxidizing Bacteria in Lab-Scale Wastewater Treatment System (폐수처리장치에서의 아질산염 산화 세균 군집 분석)

  • Jeong, Soon-Jae;Lee, Sang-Ill;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • Nitrogen is one of the major pollutants that should be removed by wastewater treatment systems. Biological nitrogen removal (BNR) is a key technology in advanced wastewater treatment systems operated by bacterial populations. Nitrification is the first step of microbiological processes in BNR system. Ammonia is oxidized to nitrite by ammonia-oxidizing bacteria (AOB) and then nitrite is subsequently oxidized to nitrate by nitrite-oxidizing bacteria (NOB). The diversity of NOB in nitrification reactors of 3 BNR systems, Edited biological aerated filter system, Nutrient removal laboratory system, and the Rumination type sequencing batch reactor system, was investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Cluster analysis of T-RF profiles showed that communities of Nitrobacter group in each system were different depending upon the process of systems. However, the clusters of Nitrospira group were divided by the habitat of aqueous and solid samples.

A Comparison of N and P Removal Characteristics by the Variation of Non-aeration Time in A2O SBBR (A2O SBBR에서 비포기 시간 배분에 따른 질소-인 제거 특성 비교)

  • Park, Young-Seek;Jeong, No-Sung;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.813-821
    • /
    • 2007
  • Laboratory scale experiments were conducted to investigate the removal characteristics of nitrogen and phosphorus in two sequencing batch biofilm reactors (SBBRs). SBBR1 had a short first non-aeration period and SBBR2 had a long first non-aeration period. The removal characteristics of nitrogen and phosphorus in each SBBR were precisely observed according to the variation of influent TOC concentration, and the operation control parameters (pH, DO concentration, ORP) in each reactor were measured. In biological nitrogen removal, there was little difference between SBBR1 and SBBR2 and the nitrogen removal efficiencies were very low. The nitrogen and phosphorus removal characteristics in high influent TOC concentration were different from those in low TOC. Nitrogen removals by simultaneous nitrification/denitrification (SND) were occurred in both SBBR1 and SBBR2. The P removal in SBBR1 was superior to that in SBBR2. The second P release was observed in SBBR1 which had long second non-aeration period.

Removal Ratio of Nitrogen & Phosphorus according to Sewage Inflow in the Biological Treatment(Biological Nutrient Removal)Process (유입하수에 따른 BNR에서의 N과 P 제거율에 관한 연구)

  • Lee, Han-Seob;Choi, Sung-Bu;Chung, Kwang-Bo;Ahn, Sung-Hwan;Kim, Kyung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.669-678
    • /
    • 2014
  • The amount of waste water generated from the domestic sources is consistently increasing in proportion to economic growth, and the conventional activated sludge process is widely being used for general waste water treatment. But the ministry of environment becomes stringthent treatment standards of N and P (less than 20mg/L of N, 2mg/L of P) to prevent the eutrophication of lake water, and therefore highly advanced treatment technology is required not only in the existing treatment plants where the activated sludge process is being used, but also in newly constructed treatment plants for the treatment of N and P. This study is aimed at highly operating the engineering technology method was developed by domestic to eliminate N and P at the same time. Experiments were conducted in the treatment plant located in Yong In city. The bioreactor was started from the principal equipment for the elimination of N and P and the elimination of organic compounds. It consists of an internal recycle piping from the end of the aerobic tank to the anoxic tank and external recycle piping from the final settling basin to the denitrification tank. By experiment of 4 types separate inflow of waste water to the denitrification tank and the anaerobic tank, and changes in staying time at the anoxic tank and the aerobic tank, the elimination of organic compounds in each type and the relationship in the efficiency between the elimination of N and P were researched.