• Title/Summary/Keyword: Biological Kinetics

Search Result 224, Processing Time 0.023 seconds

A Study of Nitrification Kinetics in the Biofilter Process for Aquaculture Water Treatment: A Review (양식 수처리를 위한 생물막 공정에서 질산화 영향인자에 대한 고찰)

  • Park, Noh Back;Park, Mi Seon;Lee, Jin Hwan;Myeong, Jeong In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.675-681
    • /
    • 2013
  • There have been many studies on biofilter process regarding satisfactory water quality and the operational conditions of Recirculating Aquaculture Systems (RAS). For effective nitrification processes, it is necessary to dynamically identify and apply nitrifying microorganisms. Physical, chemical and biological processes concerning biofilms can be applied and influential factors including substrate, dissolved oxygen concentrations, organic matter, temperature, pH, alkalinity, salinity and mixing velocity intensity need to be considered. Also, designing and managing the process based on the dynamic interpretation of these factors are prerequisites for engineering applications of the biofilter process. This paper draws on current literature on the kinetics of nitrification of biofilms in the biofilter process. Influential factors for nitrification are crucial during the biofilter process and are expected to be critical in informing the design and operation of recirculating aquaculture systems.

Adsorption of Methylene Blue by Soybean Stover and Rice Hull Derived Biochars Compared to that by Activated Carbon (메틸렌블루 제거 시 활성탄과 바이오차(대두줄기와 쌀겨)의 흡착성능 비교)

  • Lee, Gi-Bong;Kim, Hyeon-Joo;Park, Soo-Gyeong;Ok, Yong-Sik;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.291-296
    • /
    • 2016
  • This study investigated the potential use of soybean stover (SS) (0.1-0.5 g/100 mL)and rice hull (RH) (1.5-3.5 g/100 mL) derived biochars for removing methylene blue (100 mg/L) from wastewater compared to activated carbon (AC) (0.1-0.5 g/100 mL). The adsorption equilibrium data were best represented by Langmuir adsorption isotherm. The calculated maximum adsorption capacity was 71.42 mg/g for AC, 30.30 mg/g for SS, and 4.76 mg/g for RH. The adsorption kinetics was found to follow the pseudo-second order kinetics model. The rate constant was 0.0020-0.0065 g/mg.min for AC, 0.0069-0.5787 g/mg.min for SS, and 0.1370-0.3060 for RH. AC and SS biochars showed considerable potential for adsorption.

Cure Kinetics of Self-Extinguishing Epoxy Resin Systems with Charge Transfer Complex Type Latent Catalyst for Semiconductor Encapsulation (전하전이착체형 잠재성 촉매를 사용한 반도체 성형용 자소성 에폭시 수지 시스템의 경화 반응속도 연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.27-32
    • /
    • 2014
  • The cure properties of self-extinguishing epoxy resin systems with different charge transfer type latent catalysts were investigated, which are composed of YX4000H as a biphenyl epoxy resin, MEH-7800SS as a hardener, and charge transfer type latent catalysts. We designed and used five kinds of charge transfer type latent catalyst and compared to epoxy resin systems with Triphenylphosphine-Benzoquinone(TPP-BQ) as reference system. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The epoxy resin systems with Triphenylphosphine-Quinhydrone(TPP-QH), Triphenylphosphine-Benzanthrone(TPP-BT) and Triphenylphosphine-Anthrone(TPP-AT) as a charge transfer type latent catalyst showed a cure conversion rate of equal or higher rate than those with TPP-BQ. These systems with TPP-QH and Triphenylphosphine-Tetracyanoethylene(TPP-TCE) showed a critical cure reaction conversion of equal or higher conversion than those with TPP-BQ. The increases of cure conversion rates could be explained by the decrease of the activation energy of these epoxy resin systems. It can be considered that the increases of critical cure reaction conversion would be dependent on the crystallinity of the biphenyl epoxy resin systems.

Equivalent Circuit Model of Glucose Kinetics (생체내 포도당 동태의 등가회로모델)

  • Yun, Jang-H.;Kim, Min-Chong
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 1981
  • The objective of the present study was to develop an equivalent circuit model of glucose kinetics including the hepatic glucose balance functions which were neglected in the previous compartmental models. Using this circuit model, the insulin resistivity parameter and hepatic glucose sensitivity parameter were estimated in optimal fitting of the model based data of glucose and insulin concentration to the reported clinical intravenous glucose tolerance test(IVGTT) data in normal and diabetic subjects. The addition of the hepatic function in the model has improved the overall performance of the simulation. Also, the computed tissue insulin resistivity and the hepatic glucose sensitivity are shown to be significant in distinguishin four clinical groups of normal and diabetic groups.

  • PDF

Evaluation of Sulfite Solution to Predict Oxygen Transfer Rates in Artificial Lung (인공폐에서의 산소전달 속도를 예측하기 위한 아황산용액의 평가)

  • Lee, S.C.;Kim, K.B.;Jheong, G.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.237-238
    • /
    • 1998
  • The kinetics of sulfite oxidation must be fast and the concentration of sulfite must be low to emulate oxygen uptake by blood. The kinetics were studied yielding a first order rate constant in sulfile, zero order in oxygen. Limitations of the technique were evaluated using the experimental rate constant and an adaptation of Lightfoot's approximation, while the reaction of hemoglobin is reversible and essentially instantaneous, that for sulfite is irreversible and finite. Thus if the approach to saturations not monotonic or if the mass transfer resistance is significantly lowered, e. g. when blood film thicknesses are thinner than a few hundred microns, deviations may occur.

  • PDF

Photocure Reactions of Photoreactive Prepolymers with Cinnamate Groups

  • Kim, Whan-Gun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.993-999
    • /
    • 2011
  • The photoreactive prepolymers with multifunctional cinnamate and bisphenol Atype cinnamate groups that could perform photodimerization without photoinitiators were synthesized by the reaction of t-cinnamic acids (CAs) and epoxy resins. Their photocure reaction rates and the extent of reaction conversion were measured with Fourier transform infrared spectroscopy, and these increased with the intensity of UVirradiation. The experimental data of these reaction rates showed the characteristics of nth-order kinetics reaction, and all kinetic constants of each photoreactive polymer with this equation were summarized. Although the GTR-1800-HCA and KWG1-EP-HCA with hydroxyl group substituted cinnamate showed lower reaction conversion rates and rate constant than GTR-1800-CA and KWG1-EP-CAwith an unsubstituted cinnamate group, GTR-1800-MCAand KWG1-EP-MCAwith methoxy group substituted cinnamate showed similar and higher reaction conversion rates than the former, respectively. These results were explained in terms of segmental mobility for photopolymerization by molecular interactions.

A Comparative Study on the Bio-kinetics of Suspended Sludge and Attached Sludge (막미생물과 부유미생물의 kinetics 비교 연구)

  • Lee, Jeoung Su;Lee, Tae Kyoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.59-69
    • /
    • 1998
  • Biological treatment systems generally can be divided into two main classes of a suspended sludge process and attached one like a fluidized bed reactor. These process are considered to bring remarkable change in species composition of microorganisms, due to difference of a state of biofilm, a concentration and diffusion velocity of dissolved oxygen, a concentration and diffusion velocity of substance or poisonous matter. The change of species composition bring different treatment result for influence factors like F/M ratio, DO concentration, pH or poisonous matter. This study is to investigate the reaction characteristics of both microorganisms, namely, a suspended sludge and attached sludge, through the changes of pH, temperature and substance concentration.

  • PDF

Post-translational Modifications and Their Biological Functions: Proteomic Analysis and Systematic Approaches

  • Seo, Ja-Won;Lee, Kong-Joo
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • Recently produced information on post-translational modifications makes it possible to interpret their biological regulation with new insights. Various protein modifications finely tune the cellular functions of each protein. Understanding the relationship between post-translational modifications and functional changes ("post-translatomics") is another enormous project, not unlike the human genome project. Proteomics, combined with separation technology and mass spectrometry, makes it possible to dissect and characterize the individual parts of post-translational modifications and provide a systemic analysis. Systemic analysis of post-translational modifications in various signaling pathways has been applied to illustrate the kinetics of modifications. Availability will advance new technologies that improve sensitivity and peptide coverage. The progress of "post-translatomics", novel analytical technologies that are rapidly emerging, offer a great potential for determining the details of the modification sites.

Enzyme-Linked, Biotin-Streptavidin Bacterial-Adhesion Assay for Helicobacter pylori Lectin-Like Interactions with Cultured Cells

  • Murillo, Guzman;Antonia, Maria;Ascencio, Felipe
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • A simple method for studying the lectin-like interactions between Helicobacter pylori and cultured human epithelial cell lines was developed using an enzyme-linked, biotin-streptavidin bacterial-adhesion assay. The present study suggests that this method is suitable for evaluating the participation of lectin interactions in the adhesion of H. pylori to cultured HeLa S3 and Kato III cells, both fixed and glycosidase-treated cells, as well as assessing glycoconjugated binding inhibition studies. The time-course and dose-dependent kinetics of the biotin-labeled H. pylori adhesion th the formaldehyde-fixed Hela S3 and Kato III cell lines exhibited saturation. In addition, the binding of the biotin-labeled H. pylori to the formaldehyde-fixed cultured cells was partially blocked by pre-incubation with glycoconjugates and polyclonal antibodies against a heparan sulfate binding protein from H. pylori.

  • PDF

Associations of Polymorphisms in Four Immune-related Genes with Antibody Kinetics and Body Weight in Chickens

  • Ahmed, A.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1089-1095
    • /
    • 2010
  • Four biological candidate genes, natural resistance associated macrophage protein 1 (SLC11A1 or NRAMP), prosaposin (PSAP), interferon Gamma (IFNG), and toll-like receptor 4 (TLR4), were examined to identify single nucleotide polymorphisms (SNP) and associations of the SNP with antibody response kinetics in hens. An $F_2$ population was produced by mating $G_0$ highly inbred (<99%) males of two MHC-congenic Fayoumi lines with highly inbred Leghorn hens. The $F_2$ hens (n = 158) were injected twice with SRBC and whole, fixed Brucella abortus (BA). Blood samples were obtained before each immunization, at 7 d after primary immunization, and at several time points after secondary immunization. Minimum titers (Ymin) and the time needed to reach them (Tmin), and maximum (Ymax) titers and the time needed to reach them (Tmax), were estimated from the seven post-secondary immunization titers using a nonlinear regression model. The $F_2$ hens were genotyped for the four candidate genes by using PCR-RFLP for one SNP per gene, which identified the parental allele. General linear models were used to test associations of SNP genotypes with antibody response parameters and BW measured at 4 ages. The IFNG SNP was highly significantly (p<0.0125) associated with primary response to SRBC, Tmin to BA, Ymin to BA, and 12-week BW. The current study demonstrated that the novel IFNG promoter SNP was associated with antibody kinetics for BA and SRBC in laying hens, and also with BW, suggesting that this cytokine may play a pivotal role in the relationship between immune function and growth.