• Title/Summary/Keyword: Biological Kinetics

Search Result 224, Processing Time 0.021 seconds

Diffusion-based determination of protein homodimerization on reconstituted membrane surfaces

  • Jepson, Tyler A.;Chung, Jean K.
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2021
  • The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions-the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton's tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.

Evaluation of Three Feasible Biodegradation Models for Food Waste

  • Kwon, Sung-Hyun;Cho, Daechul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • Food waste is produced from food factories, food services, and home kitchens. The generated mass reached 5.4 million tons/year in 2020. The basic management technology for such waste has been biological degradation under an anaerobic environment. However, the whole process is intrinsically slow and considerably affected by the inner physicochemical properties of the waste and other surrounding conditions, which makes optimization of the process difficult. The most promising options to counter this massive generation of waste are eco-friendly treatments or recycling. As a preliminary step for these options, attempts were made to evaluate the feasibility and usability of three simulative models based on reaction kinetics. Model (A) predicted relative changes over reaction time for reactant, intermediate, and product. Overall, an increased reaction rate produced less intermediate and more product, thereby leading to a shorter total reaction time. Particle diminishing model (B) predicted reduction of the total waste mass. The smaller particles diminished faster along with the dominant effect of microbial reaction. In Model (C), long-chain cellulose was predicted to transform into reducing sugar. At a standard condition, 48% of cellulose molecules having 105 repeating units turned into reducing sugar after 100 h. Also it was found that the optimal enzyme concentration where the highest amount of remnant sugar was harvested was 1 mg L-1.

Residues and Half-lives of Bitertanol and Tebuconazole in Greenhouse-Grown Peppers (시설재배 고추중 Bitertanol 및 Tebuconazole 잔류양상)

  • Seong, Ki-Yong;Jeong, Mong-Hee;Hur, Jang-Hyun;Kim, Jeong-Gyu;Lee, Kyu-Seung;Choi, Kyu-Il
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.113-119
    • /
    • 2004
  • Persistence of the triazole fungicides, bitertanol and tebucnazole was investigated after their application at recommended and double rate on greenhouse-grown peppers. The half-life of bitertanol and tebuconazole on peppers at recommended and double rate was $5.2{\sim}6.1$ and $4.6{\sim}5.2$ days, respectively. Half-lives of bitertanol and tebuconazole on pepper leaves $(16.8{\sim}22.5\;days)$ was longer than those in the peppers. Residual concentration of bitertanol and tebuconazole on pepper leaves 24 days after application were 10.1 and 17.5 mg/kg, respectively, and these levels were higher than MRL which had been established at 3.0 and 5.0 mg/kg in Korea. Pattern of dissipation was well fitted to the first-order kinetics. In household washing experiment with surfactant, dislodgeable portions on pepper leaves of bitertanol and tebuconazole were occupied 36% and 48% of the residues found 24 days after application.

Preparation of Solid Polymer Electrolytes by Ultraviolet Radiation and the Electrochemical Properties of Activated Carbon Supercapacitor Adopting Them (자외선 조사에 의한 고체 고분자 전해질의 제조와 이를 채용한 활성탄 수퍼커패시터의 전기화학적 특성)

  • Won, Jung Ha;Kim, Yong Joo;Lee, Young-Gi;Kim, Kwang Man;Kim, Jong Huy;Ko, Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Solid polymer electrolyte films are prepared by ultraviolet radiation in the mixtures of an ionic liquid salt (1-ethyl-3-methylimidazolium tetrafluoroborate, $EMIBF_4$) and solvent (acetonitrile (ACN) or propylene carbonate(PC)), and an oligomer (poly(ethylene glycol)diacrylate, PEGDA, 45-60 wt.%). Electrochemical properties of activated carbon supercapacitors adopting the solid polymer electrolyte films as a separator are also examined by cyclic voltammetry and impedance measurement techniques. As a result, the supercapacitor adopting the PEGDA as much as 45 wt.% exhibits a superior capacitance of $46Fg^{-1}$ at $20mVs^{-1}$. It seems that this is due to fast kinetics of ion conduction by sufficient film flexibility, which can be allowed by comparatively weak ultraviolet curing of small anount of the PEGDA.

Study on the Pyrolysis Kinetics of Deasphalted Oil Using Thermogravimetric Analysis (열중량 분석법을 이용한 Deasphalted Oil의 열분해 특성 분석)

  • Shin, Sang Cheol;Lee, Jung Moo;Lee, Ki Bong;Jeon, Sang Goo;Na, Jeong Geol;Nho, Nam Sun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.391-397
    • /
    • 2012
  • The depletion of conventional oil reserves and the increasing energy need in developing countries such as China and India result in exceeding oil demand over supply. As a solution of the problem, the efficient utilization of heavy oil has been receiving more and more interest. In order to utilize heavy oil, upgrading processes are required. Among the upgrading processes, thermal decomposition is thought to be relatively simple and economical. In this study, to understand basic characteristics of thermal decomposition of heavy oil, we conducted pyrolysis experiments of deasphalted oil (DAO) produced by a solvent deasphalting process. DAO is a mixture of many components and consists mainly of materials of carbon number 20~40. For the comparison with results of DAO pyrolysis, additional pyrolysis experiments with single materials of carbon number 30 ($C_{30}H_{62}$, $C_{30}H_{58}O_4S$, $C_{30}H_{63}O_3P$) were conducted. Pyrolysis experiments were carried out non-isothermally with variation of heating rate (10, 50, $100^{\circ}C$/min) in a thermogravimetric analyzer. Average pyrolysis activation energy determined by using Arrhenius method, Ingraham and Marrier method, and Coats and Redfern method was 72~99 kJ/mol. In the activation energy calculated by Ozawa-Flynn-Wall method, DAO had wider variation than other single materials.

Kinetic Study on Char-CO2 Catalytic Gasification of an Indonesian lignite (인도네시아 갈탄의 촤-CO2 촉매가스화 반응특성연구)

  • Lee, Do Kyun;Kim, Sang Kyum;Hwang, Soon Choel;Lee, Si Hoon;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.544-552
    • /
    • 2014
  • In this study, We have investigated the kinetics on the char-$CO_2$ gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-$CO_2$ catalytic gasification of an Indonesian Roto lignite. $Na_2CO_3$, $K_2CO_3$, $CaCO_3$ and dolomite were selected as catalyst which was physical mixed with coal. The char-$CO_2$ gasification reaction showed rapid an increase of carbon conversion rate at 60 vol% $CO_2$ and 7 wt% $Na_2CO_3$ mixed with coal. At the isothermal conditions range from $750^{\circ}C$ to $900^{\circ}C$, the carbon conversion rates increased as the temperature increased. Three kinetic models for gas-solid reaction including the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM model for the Roto lignite. The activation energies for each char mixed with $Na_2CO_3$ and $K_2CO_3$ were found a 67.03~77.09 kJ/mol and 53.14~67.99 kJ/mol.

Reactivity Study on the Kideco Coal Catalytic Coal Gasification under CO2 Atmosphere Using Gas-Solid Kinetic Models (기-고체 반응 모델을 이용한 Kideco탄의 이산화탄소 촉매 석탄가스화 반응 특성)

  • Lee, Do Kyun;Kim, Sang Kyum;Hwang, Soon Cheol;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • In this study, we have investigated the kinetics on the char-CO2 catalytic gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-CO2 catalytic gasification of an Indonesian Kideco sub-bituminous. Na2CO3 and K2CO3 were selected as catalysts which were physically mixed with coal. The char-CO2 catalytic gasification reaction showed a rapid increase of carbon conversion rate at 850 ℃, 60 vol% CO2, and 7 wt% Na2CO3. At the isothermal conditions ranging from 750 ℃ to 900 ℃, the carbon conversion rates increased as the temperature increased. Four kinetic models for gas-solid reaction including the shrinking core model (SCM), random pore model (RPM), volumetric reaction model (VRM), and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM for the Kideco sub-bituminous. The activation energies for each char mixed with Na2CO3 and K2CO3 were found 55-71 kJ/mol and 69-87 kJ/mol.

The Characterization of Mass Transfer Factors in Neuroblastoma Implanted in Immunosuppressed Nude Rats (면역결핍누드쥐에 이식된 neuroblastoma에서의 물질전달에 미치는 인자의 특성)

  • ;G.R
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 1994
  • The chemotherapy using macromolecules, i.e., monoclonal antibodies loaded with anticancer agents hasn't been successful in delivering therapeutic amount of the conjugates. The comprehensive evaluation of mass transfer factors in tumor is prerequisite for the development of the effective chemotherapy. Characterization of neuroblastoma implanted in immunosuppressed athymic nude rats was performed. Its growth kinetics, glucose metabolic rate (GMR) were measured along with the interstitial fluid pressure (IFP), blood perfusion rate (BPR) and pH distribution throughtout the tumor radius. Volume doubling time and GMR were 8.1 days(SD 0.44 day), 23.53 mg/min/100 g(SD 3.54 mg/min/100 g), respectively. The IFP in tumor center was increased with tumor volume, and approached to 3 mmHg (SD 2.6 mmHg) when the tumor was 3 cm high. The radial distribution of IFP, BPR and pH in 2 cm high tumors showed that BPR and pH were decreased, while IFP was increased as the ~ensors moved toward the tumor center. The elevated IFP, decreased BPR and pH in tumor center suggested that the delivery of conjugates might be increased by properly manipulating mass transfer factors.

  • PDF

Substrate Quality Effects on Decomposition of Three Livestock Manure Composts with Similar Stability Degree in an Acid Loamy Soil

  • Lim, Sang-Sun;Jung, Jae-Woon;Choi, Woo-Jung;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.527-533
    • /
    • 2011
  • Decomposition of compost applied to soils is affected basically by its biological stability; but, many other chemical properties of the compost may also influence compost organic-C mineralization. This study was conducted to investigate the principal substrate quality factors of composts that determine C mineralization of compost with similar stability degree (SD). Three composts samples with similar SD but different chemical properties such as pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ were mixed with an acid loamy soil and $CO_2$ emission was monitored during the laboratory incubation for 100 days. Temporal pattern of cumulative compost organic-C mineralization expressed as % of total organic C ($C_{%\;TOC}$) followed double exponential first order kinetics model and the $C_{%\;TOC}$ ranged from 4.8 to 11.8% at the end of incubation. The pattern of C%TOC among the composts was not coincident with the SD pattern (40.1 to 58.6%) of the composts; e.g. compost with the lowest SD resulted in the least $C_{%\;TOC}$ and vice versa. This result indicates that SD of compost can not serve as a concrete predictor of compost mineralization as SD is subject not only to maturity of compost but also to characteristics of co-composting materials such as rice hull (low SD) and sawdust (high SD). Meanwhile, such pattern of $C_{%\;TOC}$ collaborated with pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ of the composts that are regarded as chemical indices of the progress of composting. Therefore, for better prediction of compost mineralization in soils, it is necessary to consider both SD and other chemical indices (pH, C/N, and molar ratio of $NH_4^+$ to $NO_3^-$).

Pharmacokinetic profile and tissue distribution of sulfamethazine in pigs and rats (돼지와 랫트에서 sulfamethazine의 약물동태학 및 조직분포)

  • Yun, Hyo-in;Park, Seung-chun;Oh, Tae-kwang;Cho, Joon-hyoung;Park, Jong-myeong
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.291-299
    • /
    • 1997
  • In order to establish optimal dosage schedules and withdrawal times for sulfamethazine(SMZ) in pigs, pharmacokinetic and tissue distribution experiments were conducted in pigs. For comparative purposes, tissue depletion kinetics are also studied in rats. From three pigs administered with SMZ i.v., the pharmacokinetic profile of SMZ in two pigs was adequately described by a one-compartment open model whereas that in one pig was patterned after a two-compartment open model. Volume of distribution(Vd) was 0.48~0.57 L/kg and biological half-life($t_{1/2}$) was 11.8-16.8 h. From three pigs dosed with SMZ p.o., pharmacokinetic profile was explainable with a one-compartment open model. Time to reach maximum SMZ concentration in serum (Tmax) was 2.8 h, 3.2 h and 7.5 h. Elimination half-life was 2.8-7.5 h. The descending order in concentration of SMZ was plsama > kidney > liver > lung > heart > pancreas > spleen > duodenum > ileum > brain > adipsoe tissue from three pigs sacrificed at 5h, 29h and 54h after the administration of SMZ, p.o.. The protein binding of SMZ in pigs was 55.2%($2.5{\mu}g/ml$), 71.5% ($5{\mu}g/kg$) and 71.5%($10{\mu}g/ml$). The mean systemic bioavailability (F) of SMZ p.o. was 49.1 %. Meanwhile the pharmacokinetic profile of SMZ in rats was adequately described by a one-compartment open model. Absorption of SMZ p.o. in the rat was very rapid. In conclusion, the oral optimal dosage regimen of SMZ for pigs was the initial dose of 45.7 mg/kg followed by the maintenance dose of 30.2 mg/kg for high specific pathogens to SMZ. The time to reach below the stipulated residual allowable concentration (0.1 ppm) was calculated 93 h after oral administration of 200 mg/kg recommended by manufactureres.

  • PDF