• 제목/요약/키워드: Biological Health Assessments

검색결과 64건 처리시간 0.026초

백마강의 화학적 수질특성 및 다변수 생태 건강도 모델 평가 (Chemical Water Quality and Multi-metric Eco-health Model Assessments in Baekma River)

  • 한정호;김현맥;안광국
    • 환경생물
    • /
    • 제31권2호
    • /
    • pp.96-104
    • /
    • 2013
  • 본 연구에서는 2007년의 금강 중 하류부의 백마강의 상류에서 하류에 이르는 5개 지점에서 이 화학적 수질특성을 분석하였고, 그 곳에 서식하는 어류군집의 어종분포 및 길드분석을 통해 군집구조 및 생태건강도 특성을 평가하였다. 전형적인 하류하천인 백마강의 BOD, COD농도는 각각 평균 $2.8mg\;L^{-1}$, $4.0mg\;L^{-1}$였고, TN, TP의 농도는 각각 $5.0mg\;L^{-1}$, $158{\mu}g\;L^{-1}$로서 이미 부영양 상태로 판정되었으며, 특히 하류 지점에서는 유기물오염 및 부영양화 현상이 뚜렷했다. 5개 지점에서 출현한 어종은 총 19종으로 나타났고, 내성종인 끄리는 가장높은 상대 풍부도(48%)를 보였다. 백마강에서 민감종의 비율(2.3%)은 낮은 반면 내성종 비율(71.8%)은 높게 나타나 중.하류 하천에서의 전형적인 길드 변화 현상이 확연히 나타났다. 하천 생태건강도 평가 (IBI)에 따르면, 백마강에서 생물보전지수는 14.8로서 악화상태인 것으로 나타났고, 수질에서 보여준 바와 같이 하류부에서는 극명하게 악화된 것으로 나타났다. 특히 하류구간 (S3~S5)의 낮은 건강도 지수값은 하수종말처리장으로부터 나온 배출수의 화학적 영향이 큰 것으로 사료되었다. 이는 생태건강도 모델값이 수질 특성을 잘 반영하는 객관성 있는 평가기법으로 활용 될 수 있음을 제시하였다. 따라서 백마강의 생태계 보존을 위해서는 향후 이 구간에 대한 하천복원 및 지속적인 생태모니터링이 중요하다고 판단된다.

금강 수계 백제보에서 어류의 종 특성 평가 및 생태평가모델 적용 (Fish Species Compositions and the Application of Ecological Assessment Models to Bekjae Weir, Keum-River Watershed)

  • 문성대;한정호;안광국
    • 한국환경과학회지
    • /
    • 제24권6호
    • /
    • pp.731-741
    • /
    • 2015
  • The objectives of study were to evaluate fish species compositions of trophic guilds and tolerance guilds and apply ecological fish assessment (EFA) models to Bekjae Weir, Keum-River Watershed. The EFA models were Stream Index of Biological Integrity (SIBI) used frequently for running water and Lentic Ecosystem Health Assessment (LEHA) used for assessments of stagnant water. The region of Bekjae Weir as a "four major river project" was originally a lotic ecosystem before the weir construction (2010, $B_{WC}$) but became more like lentic-lotic hybrid system after the construction (2011, $A_{WC}$). In the analysis of species composition and ecological bioindicator (fish), fish species with a preference of running water showed significant decreases (p < 0.05), whereas the species with a preference of stagnant water showed significant increases (p < 0.05). After the weir construction, relative abundances of tolerant species increased, and the proportion of insectivores decreased. This phenomenon indicated the changes of biotic compositions in the system by the weir construction. Applications of SIBI and LEHA models to the system showed that the two model values decreased at the same time after the weir construction ($A_{WC}$), and the region became more like lentic-lotic hybrid system, indicating the degradation of ecosystem health. The model values of SIBI were 19 and 16, respectively, in the BWC and AWC, and the health conditions were both "C-rank". In the mean time, the LEHA model analysis showed that the values was 28 in the BWC and 24 in the AWC, thus the health was turned to be "B-Rank" in the BWC and "C-Rank" in the AWC. indicating a degradation of ecological heath after the weir construction.

Physicochemical water quality characteristics in relation to land use pattern and point sources in the basin of the Dongjin River and the ecological health assessments using a fish multi-metric model

  • Jang, Geon-Su;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • 제40권1호
    • /
    • pp.34-44
    • /
    • 2016
  • Background: Little is known about how chemical water quality is associated with ecological stream health in relation to landuse patterns in a watershed. We evaluated spatial characteristics of water quality characteristics and the ecological health of Dongjin-River basin, Korea in relation to regional landuse pattern. The ecological health was assessed by the multi-metric model of Index of Biological Integrity (IBI), and the water chemistry data were compared with values obtained from the health model. Results: Nutrient and organic matter pollution in Dongjin-River basin, Korea was influenced by land use pattern and the major point sources, so nutrients of TN and TP increased abruptly in Site 4 (Jeongeup Stream), which is directly influenced by wastewater treatment plants along with values of electric conductivity (EC), bacterial number, and sestonic chlorophyll-a. Similar results are shown in the downstream (S7) of Dongjin River. The degradation of chemical water quality in the downstream resulted in greater impairment of the ecological health, and these were also closely associated with the landuse pattern. Forest region had low nutrients (N, P), organic matter, and ionic content (as the EC), whereas urban and agricultural regions had opposite in the parameters. Linear regression analysis of the landuse (arable land; $A_L$) on chemicals indicated that values of $A_L$ had positive linear relations with TP ($R^2=0.643$, p < 0.01), TN ($R^2=0.502$, p < 0.05), BOD ($R^2=0.739$, p < 0.01), and suspended solids (SS; ($R^2=0.866$, p < 0.01), and a negative relation with TDN:TDP ratios ($R^2=0.719$, p < 0.01). Conclusions: Chemical factors were closely associated with land use pattern in the watershed, and these factors influenced the ecological health, based on the multimetric fish IBI model. Overall, the impairments of water chemistry and the ecological health in Dongjin-River basin were mainly attributes to point-sources and land-use patterns.

제재업의 생물학적인자 노출실태 평가 (Exposure Assessment for Airborne Biological Agents in Sawmills)

  • 박해동;박현희;이인섭
    • 한국산업보건학회지
    • /
    • 제20권4호
    • /
    • pp.274-281
    • /
    • 2010
  • The objectives of this study are (a) to investigate the distribution patterns and exposure concentrations of biological agents in sawmill industries and (b) to compare sampling methods of biological agents. The representative processes of 5 sawmills were selected to measure total airborne bacteria, fungi, endotoxin as well as dust. Airborne bacteria and fungi were measured with one stage impactor, six stage impactor and gelatin filteration methods. Endotoxin was collected with polycarbonate filters and analysed by kinetic chromogenic Limulus Amebocyte Lysate method. Geometric mean levels of airborne bacteria, fungi, endotoxin and dust were 1,864 CFU/$m^3$, 2,252 CFU/$m^3$, 31.5 EU/$m^3$ and 2.4 mg/$m^3$. The ratios of indoor/outdoor concentrations were 3.7 for bacteria, 4.1 for fungi, 3.3 for endotoxin and 9.7 for dust. The respiratory fractions of bacteria were 68.0, 50.9, 49.2 and 45.1% in band-saw, table-saw, rip-saw process and outdoor air. The respiratory fractions of fungi were 78.7, 90.8, 87.5 and 84.8% in band-saw, table-saw, rip-saw process and outdoor air, respectively. There was no significant differences in bacterial concentrations among single stage, six stage impaction and filteration methods. But, fungal concentrations measured with filtration methods were significantly higher than those with impaction methods. Geometric mean levels of airborne bacteria and fungi were higher than the OSHA guideline values of 1,000 CFU/$m^3$. The respiratory fractions of fungi were above 75%. The concentrations of biological agents were significantly different among culture-based sampling methods. In the exposure assessments of biological agents, further studies are needed for the comparisons of diverse sampling methods and the investigations of environmental factors.

Preliminary Ecological Assessments of Water Chemistry, Trophic Compositions, and the Ecosystem Health on Massive Constructions of Three Weirs in Geum-River Watershed

  • Ko, Dae-Geun;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • 제39권1호
    • /
    • pp.61-70
    • /
    • 2016
  • Major objectives of the study were to analyze chemical and biological influences of the river ecosystem on the artificial weir construction at three regions of Sejong-Weir (Sj-W), Gongju-Weir (Gj-W), and Baekje-Weir (Bj-W) during 2008-2012. After the weir construction, the discharge volume increased up to 2.9 times, and biological oxygen demand (BOD) and electrical conductivity (EC) significantly decreased (p < 0.05). Also, the decrease of total phosphorus (TP) was also evident after the weir construction, but still hyper-eutrophic conditions, based on criteria by , were maintained. Multi-metric model of Index of Biological Integrity (IBI) showed that IBI values averaged 21.0 (range: 20-22; fair condition) in the Bwc, and 14.3 (range: 12-18; poor condition) in the Awc. The model values of IBI in Sj-W and Gj-W were significantly decreased after the weir construction. The model of Self-Organizing Map (SOM) showed that two groups (cluster I and cluster II) of Bwc and Awc were divided in the analysis based on the clustering map trained by the SOM. Principal Component Analysis (PCA) was similar to the results of the SOM analysis. Taken together, this research suggests that the weir construction on the river modified the discharge volume and the physical habitat structures along with distinct changes of some chemical water quality. These physical and chemical factors influenced the ecosystem health, measured as a model value of IBI.

식품 환경 오염 미세플라스틱의 인체 영향과 위해평가 동향 (Microplastics in foods: the hazardous characteristics and risk on human health)

  • 강미선;김현정
    • 식품과학과 산업
    • /
    • 제54권1호
    • /
    • pp.2-10
    • /
    • 2021
  • Microplastics with a size of less than 5 mm have emerged as an important environmental and food safety issue, as they have been detected not only in marine but also in terrestrial ecosystem and drinking water. Although many studies have been conducted on the exposure of microplastics and the effects on human health, the lack of standardized experimental methods for microplastics has been reviewed as a major problem. In order to overcome this, European countries such as the Netherlands and Germany are conducting a project to develop detection methods for microplastics as well as to establish the risk assessment methodologies for microplastics. Being the microplastics suggested to have a substantially potential risk on human health, reliable risk assessments should be conducted considering the various sources of microplastics, chemical pollutants and biological factors. In addition, international standards and regulations should be applied.

우리나라 하천 환경 평가체계의 분석: 생물분야를 중심으로 (Analysis of Stream Environmental Assessment Systems in Korea: Focus on the Biological Aspect)

  • 전승훈;김채백;김우람;박상길;채수권
    • Ecology and Resilient Infrastructure
    • /
    • 제2권2호
    • /
    • pp.108-117
    • /
    • 2015
  • 본 연구는 우리나라 하천수계의 하천환경 관리를 위해 적용되고 있는 생물학적 평가체계를 법제도적 기준과 실행계획 측면에서 검토 분석하여 문제점을 도출하기 위하여 수행되었다. 하천법과 하천사업의 계획 설계과정의 관련 지침, 수질 및 수 생태계 보전법과 수 생태계 건강성 평가 기준을 중점적으로 비교 검토하였다. 무엇보다 하천환경평가 관련 법제도적 근거가 미흡하고 관련 기준과 지침이 구체적이지 못하여 하천환경 관리의 실효성이 확보되지 못하고 있는 것으로 판단되었다. 또한 국토교통부와 환경부로 이원화된 하천수계 관리체계를 반영하듯 생물 분야의 평가항목과 기준이 수자원 관리와의 통합적 수준에 이르지 못한 채 두 부서의 사업추진 과정에서 단편적으로 고려되고 있었다. 특히 생물 중심의 평가항목과 기준은 물리구조적 서식환경 또는 수질과 연관된 수생생물에 국한되어 있을 뿐만 아니라 대다수 생물에 대한 정밀 조사를 필요로 하는 환경영향평가의 과정으로 고려되는 수준이었다. 결론적으로 하천수계를 대표할 수 있고 비교적 변동성이 적은 식생, 어류, 조류 등 고등생물을 지표화한 신속하면서도 공간 정보화된 정량적 평가기법이 마련되어야 할 것으로 판단되었다.

Infection Risks Faced by Public Health Laboratory Services Teams When Handling Specimens Associated With Coronavirus Disease 2019 (COVID-19)

  • Wong, Chun-Kwan;Tsang, Dominic N.C.;Chan, Rickjason C.W.;Lam, Edman T.K.;Jong, Kwok-Kwan
    • Safety and Health at Work
    • /
    • 제11권3호
    • /
    • pp.372-377
    • /
    • 2020
  • Infection risks of handling specimens associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by public health laboratory services teams were assessed to scrutinize the potential hazards arising from the work procedures. Through risk assessments of all work sequences, laboratory equipment, and workplace environments, no aerosol-generating procedures could be identified except the procedures (mixing and transfer steps) inside biological safety cabinets. Appropriate personal protective equipment (PPE) such as surgical masks, protective gowns, face shields/safety goggles, and disposable gloves, together with pertinent safety training, was provided for laboratory work. Proper disinfection and good hand hygiene practices could minimize the probability of SARS-CoV-2 infection at work. All residual risk levels of the potential hazards identified were within the acceptable level. Contamination by gloved hands was considered as a major exposure route for SARS-CoV-2 when compared with eye protection equipment. Competence in proper donning and doffing of PPE accompanied by hand washing techniques was of utmost importance for infection control.

Ecological health assessments using multiple parameters of fish blood tissues to community along with water chemistry in urban streams

  • Kang, Han-il;Choi, Ji-Woong;Hwang, Seock-Yeon;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • 제38권3호
    • /
    • pp.307-318
    • /
    • 2015
  • The objectives of this study were to identify multi-level stressors from blood biomarkers to community-level bioindicators and diagnose the stream ecosystem health in polluted streams. Blood chemistry such as total protein ($T_{Pro}$), blood urea nitrogen ($B_{UN}$), total cholesterol ($T_{Cho}$) and $A_{lb}$umin ($A_{lb}$) were analyzed from sentinel fish tissues; the functions of kidney, gill and liver were significantly decreased in the impacted zone ($I_z$), compared to the control zone ($C_z$). Histopathological analysis showed that fish liver tissues were normal in the $C_z$. Fish liver tissues in the $I_z$, however, showed large cell necrosis and degeneration and also had moderate lobular inflammation and inflammatory cell infiltration of lymphocytic histocytes. Species biotic index (SBI) at species level and stream health assessment (SHA) at community level indicated that chemical impacts were evident in the $I_z$ (ecological health; poor - very poor), and this was matched with the blood tissue analysis and histopathological analysis. The impairments of the streams were supported by water chemistry analysis (nitrogen, phosphorus). Tolerance guild analysis and trophic guild analysis of fish were showed significant differences (P < 0.01) between $C_z$ and $I_z$. Overall, multiple parameter analysis from biomarker level (blood tissues) to bioindicator level (community health) showed significantly greater impacts in the $I_z$ than $C_z$. This approach may be effective as a monitoring tool in identifying the multilateral and forthcoming problems related to chemical pollution and habitat degradation of stream ecosystems.

생물 군집의 회복력 및 저항력 : 하천생태계 건전성 평가를 위한 응용성 (Resilience and Resistance of Biological Community : Application for Stream Ecosystem Health Assessment)

  • 노태호
    • 환경정책연구
    • /
    • 제1권1호
    • /
    • pp.91-110
    • /
    • 2002
  • Ecosystem health assessment is an emerging concept regarded as a useful diagnostic tool for evaluating ecosystems. The stability of ecosystem is the main theme in the assessment. Generally, two components - resilience and resistance - are involved in the mechanism of ecosystem stability. In this study, relative degrees of the resistance and the resilience were quantified for most aquatic Insects Inhabiting running waters in Korea. A total of 34 groups were newly categorized based on previous studies, and a conceptual model has been produced. The model was applied for the aquatic insect communities inhabiting different streams and demonstrated that each stream ecosystem possessed different degrees of stability. This study also indicated that it was possible to compare stabilities of different ecosystems using relative degrees of resilience and resistance. Using the conceptual model, suitable conservation and management strategies could be recommended in ecological assessments. The model can be used as a stepping-stone for developing more comprehensive methodology that objectively diagnoses and evaluates the ecosystem stability.

  • PDF