• Title/Summary/Keyword: Biological Aerated Filter(BAF)

Search Result 25, Processing Time 0.031 seconds

Treatment Characteristics of Biological Aerated Filter Process Using the Upflow and Downflow System (상향류 및 하향류 생물막여과공정의 처리특성에 관한 연구)

  • Lee, Yang-Kyoo;Kim, Gun-Hyub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.837-848
    • /
    • 2006
  • This paper presents the test results of biological aerated filtration(BAF) process to replace activated sludge process by enhancing treated effluent quality and reducing the costs. In BAF process both BOD and SS compounds in wastewater are degraded and removed by biological reaction and filtration. Upflow BAF with expanded polypropylene media and downflow BAF with ceramic media were used to investigate the effects of hydraulic and organic loads on effluent quality. As a result, in BAF processes which has different media, upflow BAF reactor shows 5% higher efficiency than downflow BAF and this phenomena caused by backwashing methods and operational conditions. The results of influence factors analyzed by Factor Analysis Method in BOD and SS treatment efficiency are the size of media, hight of media bed and type of media. The quantitative effects of media size are 5.73% in TBOD, 5.78% in SBOD and 7.65% in TSS, so we confirmed the main factor is media size.

Effective Total Nitrogen (TN) Removal in Partially Aerated Biological Aerated Filter (BAF) with Dual Size Sand Media (다중 모래 여재를 적용한 부분 포기 Biological Aerated Filter의 효과적인 Total Nitrogen (TN) 제거)

  • Kang, Jeong-Hee;Song, Ji-Hyeon;Ha, Jeong-Hyub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.5-14
    • /
    • 2010
  • A pilot-scale biological aerated filter (BAF) was operated with an anaerobic, anoxic and oxic zone at $23{\pm}1^{\circ}C$. The influent sCOD and total nitrogen concentrations in the feedwater were approximately 250 mg/L and 35 mg N/L, respectively. sCOD removal at optimum hydraulic retention time (HRT) of 3 hours with recirculation rates of 100, 200 and 300% in the column was more than 96%. Total nitrogen removal was consistently above 80% for 4 and 6 hours HRT at 300% recirculation. For 3 hours HRT and 300% recirculation, total nitrogen removal was approximately 79%. Based on fitting results, the kinetic parameter values on nitrification and denitrification show that as recirculation rates increased, the rate of ammonia and nitrate transformation increased. The ammonium loading rates for maximum ammonium removed were 0.15 and 0.19 kg $NH_3$-N/$m^3$-day for 100% and 200% recirculation, respectively. The experimental results demonstrated that the BAF can be operated at an HRT of 3 hours with 200 - 300% recirculation rates with more than 96 % removal of sCOD and ammonium, and at least 75% removal of total nitrogen.

Nitritation Characteristics Depending on Influent Nitrogen Concentration in a Biological Aerated Filter (Biological Aerated Filter에서 유입 질소농도에 따른 아질산화 특성)

  • Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The purpose of this study was to investigate the nitrification characteristics of biological aerated filter (BAF) packed with ceramic media, especially focusing on nitrite build-up during nitrification. When increasing the nitrogen load above $1.63kgNH_4{^+}-N/m^3{\cdot}d$, ammonium removal efficiency decreased to less than 60% and the nitrite ratio ($NO_2{^-}-N/NO_x-N$) of higher than 75% was achieved due to the inhibitory free ammonia (FA, $NH_3-N$) concentration and oxygen limitation. FA inhibition, however, is not recommended strategy to promote nitrite build-up since FA concentration in the reactor is coupled with decreased ammonium removal efficiency. Nitrite ratio in the effluent was also affected by aeration rate and influent ammonium concentration. Ammonium oxidation was enhanced at a higher aeration rate regardless of influent ammonium concentration but, the nitrite ratio was dependent on both aeration rate and influent ammonium concentration. While a higher nitrite ratio was obtained when BAFs were fed with $50mgNH_4{^+}-N/L$ of influent, the nitrite ratio significantly decreased for a greater influent concentration of $200-300mgNH_4{^+}-N/L$. Taken together, aeration rate, influent ammonium concentration and FA concentrations kept in the BAF were found to be critical variables for nitrite accumulation in the BAF system.

Nitrification of low concentration ammonia nitrogen using zeolite biological aerated filter (ZBAF)

  • Kim, Jin-Su;Lee, Ji-Young;Choi, Seung-Kyu;Zhu, Qian;Lee, Sang-Ill
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.554-560
    • /
    • 2020
  • This study focuses on nitrification through a biological aerated filter (BAF) that is filled with a zeolite medium at low concentrations of ammonia. The zeolite medium consists of natural zeolite powder. The BAF is operated under two types of media, which are a ball-type zeolite medium and expanded poly propylene (EPP) medium. Nitrification occurred in the zeolite BAF (ZBAF) when the influent concentration of ammonia nitrogen was 3 mg L-1, but the BAF that was filled with an EPP medium did not experience nitrification. The ammonia nitrogen removal efficiency of ZBAF was 63.38% and the average nitrate nitrogen concentration was 1.746 mg/L. The ZBAF was tested again after a comparison experiment to treat pond water, and municipal wastewater mixed pond water. The ZBAF showed remarkable ammonia-nitrogen treatment at low concentration and low temperature. During this period, the average ammonia nitrogen removal efficiency was 64.56%. Especially, when water temperature decreased to 4.7℃, ammonia nitrogen removal efficiency remained 79%. On the other hand, the chemical-oxygen demand (COD) and phosphorus-removal trends were different. The COD and phosphorus did not show as efficient treatment as the ammonia-nitrogen treatment.

Tertiary Treatment of Municipal Wastewater and Bypassed Rainfall Treatment using by BAF (BAF를 이용한 하수의 3차 처리 및 by-pass된 우수의 처리)

  • Lee, Kwang Je;Park, Jae-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.327-331
    • /
    • 2005
  • The study was conducted with two laboratory biological aerated filter (BAF) reactors: denitrification filter (DF) and nitrification BAF. The influent flow (Q) was fixed to 48 L/d and total empty bed contact time (EBCT) was 1 hr. The flow direction was upflow with NRCY of 1 to 2Q. The secondary effluent was fed to the reactors and the influent concentrations were adjusted with some stock solutions to simulate by-pass concentration during rainfall. The study results indicate that COD and SS removal efficiencies were excellent and not influenced by temperature. Nitrification efficiency was over 90% at the influent loading less than $1.12kg/media\;m^3/d$, but the efficiencies were decreased in low temperature. TN removal efficiencies were 10% to 60%.

Study on a Small-scale Wastewater Treatment System using Biological Aerated Filter (생물학적 호기성필터를 이용한 소규모 하수처리시스템에 관한 연구)

  • Park, Chan G.;Jo, Eun Y.;Kim, Young H.;Park, Sung J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.41-45
    • /
    • 2014
  • The biological aerated filter (BAF) reactor is regarded as an effective biological wastewater treatment method. It can remove pollutants by carrier filtration and biodegradation. Due to its advantages, which include high biomass retention, tolerance to toxicity, excellent removal efficiency, and slurry separation, BAF has been widely used to remove COD, $NH_4{^+}-N$, phosphorus, and other harmful organic substances. In this study, the BAF reactor was used to remove organic contaminants of domestic wastewater of Korea at both the benchand pilot-scale. The main objectives of this study are to: (i) investigate the removal efficiency of organic contaminants (ex. COD, nitrate, phosphorus) in BAF reactors at both scales; (ii) characterize the small-scale wastewater treatment plant using the BAF reactor. The concentration of COD in the influent increased from 69 to 246 mg/L. During the operation period, the final effluent concentration of COD remained maximum 4.0 mg/L, and the average removal efficiency was above 88%. The present study investigated the removal efficiencies of COD, TN, TP and $NH_4{^+}-N$ from smelting wastewater by BAF system. When treating wastewater in both bench and pilot-scale reactors, the BAF worked well.

단일 생물막 반응기에서 역세척과 다공성 생물막 담체가 질소제거에 미치는 영향

  • Lee, Su-Cheol;Yu, Ik-Geun;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.451-454
    • /
    • 2000
  • This study was carried out to investigate the effects of hydraulic backwash load and porous ceramic media on the biological nitrogen removal efficiencies of a biological aerated filter. An upflow anoxic-oxic biological aerated filter(AO-BAF) with porous ceramic media can remove nitrogen by nitrification and denitrification in single unit. After the AO-BAF backwash, nitrogen removal efficiency was lowest and gradually increased to the steady state. Nitrification efficiency, however, showed the opposite result. It is likely that the biofilms are exposed to aerobic condition as the excess biofilms were sloughed off by backwashing

  • PDF

A Study on Performance Estimation and Operation Strategy of Biological Aerated Filter Using Semi-Empirical Biofilm Model (준 경험 생물막 모델(Semi-Empirical Biofilm Model)을 이용한 BAF 운전평가 및 적정 운전방안 도출)

  • Yoo, Kwangtae;Kim, Jongrack;Yun, Zuwhan;Hwang, Hojae;Lee, Hansaem;Kim, Sungpyo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.269-282
    • /
    • 2014
  • The objective of this study is to find out whether the developed semi-empirical biofilm model can be applicable to real BAF pilot-scale wastewater treatment. In addition, the optimum operating conditions of BAF as a function of process variables such as organic loading change can be drawn based on the simulation results of model. The results will provide the economic and efficient BAF process design and operating control. As a result, developed semi-empirical biofilm model which is relatively simple compared to mathematical model can simulate three BAF processes consisted of 25 layers within 1 seconds. When this model was used for simulating real pilot scale BAF process and the simulated water quality values were compared to experimental ones, simulated TCOD, SCOD, TN, $NH_4{^+}$-N, $NO_x{^-}$-N, alkalinity values were different to experimental ones within 21%, 20%, 8.1%, 48%, 10%, and 23%, respectively. Therefore, if the BAF system was equipped with automatic control, the BAF process can be better efficiently adapted under the condition of significant change of influent loading.

Tertiary Treatment of Sewage by Micro Bubble Ozone and BAF System (미세기포 오존과 생물여과 시스템을 이용한 생활하수의 3차 처리에 관한 연구)

  • Kang, Dong-Han;Jang, Young-Ho;Kim, Jong-Su;Kim, Keug-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.877-884
    • /
    • 2011
  • In this paper, the removal characteristics of dissolved organic carbon (DOCs) by micro bubble ozonation process and $O_3/UV$ process were comparatively studied. In the point of DOC removing reaction coefficient, micro bubble ozonation system and $O_3/UV$ process had not significant difference, $0.0120sec^{-1}$ and $0.0141sec^{-1}$. Therefore micro bubble ozonation process is more suitable for tertiary treatment of sewage in the point of installation and maintenance cost-reducing. The optimum ozone injection rate was 2.0 g $O_3/g$ DOC and HRT was 3 min for the micro bubble ozonation process. The removal efficiency of DOC and SUVA in micro bubble ozonation system was 32.8% and 58.3% respective. Biological aerated filter (BAF) process was installed to remove soluble organic material increased by micro bubble ozonation system. And the effluent BOD of BAF was below 1.0 mg/L. In the view of cost-effectiveness, $O_3/BAF$ process was more profitable than $O_3/UV/BAF$ process for tertiary treatment of sewage. In order to nitrify ammonia in the BAF process completely, $NH_4{^+}-N$ concentration in the influent water of BAF should be designed considering low water temperature in the winter season.

High Strength Slaughter Wastewater Treatment in a Novel Combined System of Hybrid-Rotating Biological Contactor and Biological Aerated Filter (Hybrid-RBC와 BAF의 조합공정을 이용한 고농도 도축폐수의 처리 특성)

  • Jung, Chan-Il;Ahn, Jo-Hwan;Bae, Woo-Keun;Kim, Seung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.77-84
    • /
    • 2011
  • This study was conducted to develop a novel combined system of a hybrid rotating biological contactor (RBC) process that was composed of an attached- and suspended- biomass reactor, followed by a settler and a biological aerated filter (BAF) column to treat a high strength slaughter wastewater. Long term influences of organic and nitrogen loading rates were investigated to see how the combined system worked in terms of the removal efficiency. A synthetic wastewater containing a pork cutlet steak source (commercially available) and swine blood was used to feed the combined system. The hybrid RBC process showed excellent removals: about 95% for soluble COD and 85% for ammonium nitrogen. However, the unsettled solids seriously deteriorated the removal efficiency of total COD (TCOD) and total nitrogen (TN) in the RBC process. A significant fraction of the TCOD and suspended solids (SS) was further removed in the BAF column although the effluent quality was still unsatisfactory, giving TCOD 300 mg/L, SS 180 mg/L and TN 59 mg/L. An addition of polyaluminium chloride into the RBC effluent improved the performance of the settler and BAF, producing an excellent quality of final effluent; TCOD 16.5 mg/L, SS 0 mg/L, TN 55.5 mg/L, TP 1.3 mg/L. Therefore, it was confirmed that the combined system of hybrid RBC and BAF could treat a high strength slaughter wastewater excellently.