• Title/Summary/Keyword: Biological $H_2$ production

Search Result 748, Processing Time 0.042 seconds

Evaluation of the Nutrient Removal Performance of the Pilot-scale KNR (Kwon's Nutrient Removal) System with Dual Sludge for Small Sewage Treatment (소규모 하수처리를 위한 파일럿 규모 이중슬러지 KNR® (Kwon's nutrient removal) 시스템의 영얌염류 제거성능 평가)

  • An, Jin-Young;Kwon, Joong-Chun;Kim, Yun-Hak;Jeng, Yoo-Hoon;Kim, Doo-Eon;Ryu, Sun-Ho;Kim, Byung-Woo
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.67-77
    • /
    • 2006
  • A simple dual sludge process, called as $KNR^{(R)}$ (Kwon's Nutrient Removal) system, was developed for small sewage treatment. It is a hybrid system that consists of an UMBR (Upflow multi-layer bioreactor) as anaerobic and anoxic reactor with suspended denitrifier and a post aerobic biofilm reactor, filled with pellet-like media, with attached nitrifier. To evaluate the stability and performance of this system for small sewage treatment, the pilot-scale $KNR^{(R)}$ plant with a treatment capacity of $50m^3/d$ was practically applied to the actual sewage treatment plant, which was under retrofit construction during pilot plant operation, with a capacity of $50m^3/d$ in a small rural community. The HRTs of a UMBR and a post aerobic biofilm reactor were about 4.7 h and 7.2 h, respectively. The temperature in the reactor varied from $18.1^{\circ}C$ to $28.1^{\circ}C$. The pilot plant showed stable performance even though the pilot plant had been the severe fluctuation of influent flow rate and BOD/N ratio. During a whole period of this study, average concentrations of $COD_{cr}$, $COD_{Mn}$, $BOD_5$, TN, and TP in the final effluent obtained from this system were 11.0 mg/L, 8.8 mg/L, 4.2 mg/L, 3.5 mg/L, 9.8 mg/L, and 0.87/0.17 mg/L (with/without poly aluminium chloride(PAC)), which corresponded to a removal efficiency of 95.3%, 87.6%, 96.3%, 96.5%, 68.2%, and 55.4/90.3%, respectively. Excess sludge production rates were $0.026kg-DS/m^3$-sewage and 0.220 kg-DS/kg-BOD lower 1.9 to 3.8 times than those in activated sludge based system such as $A_2O$ and Bardenpho.

  • PDF

Effect of D-Fructose on Sugar Transport Systems in Trichoplusia ni Cells and Photolabeling of the Trichoplusia ni Cell-Expressed Human HepG2 Type Glucose Transport Protein (Trichoplusia ni 세포에 내재하는 당 수송체에 D-fructose가 미치는 효과와 Trichoplusia ni 세포에 발현된 사람 HepG2형 포도당 수송 단백질의 photolabelling)

  • Lee, Chong-Kee
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2014
  • Trichoplusia ni cells are used as a host permissive cell line in the baculovirus expression system, which is useful for large-scale production of human sugar transport proteins. However, the activity of endogenous sugar transport systems in insect cells is extremely high. Therefore, the transport activity resulting from the expression of exogenous transporters is difficult to detect. Furthermore, very little is known about the nature of endogenous insect transporters. To exploit the expression system further, the effect of D-fructose on 2-deoxy-D-glucose (2dGlc) transport by T. ni cells was investigated, and T. ni cell-expressed human transporters were photolabeled with [$^3H$] cytochalasin B to develop a convenient method for measuring the biological activity of insect cell-expressed transporters. The uptake of 1 mM 2dGlc by uninfected- and recombinant AcMPV-GTL infected cells was examined in the presence and absence of 300 mM of D-fructose, with and without $20{\mu}M$ of cytochalasin B. The sugar uptake in the uninfected cells was strongly inhibited by fructose but only poorly inhibited by cytochalasin B. Interestingly, the AcMPV-GTL-infected cells showed an essentially identical pattern of transport inhibition, and the rate of 2dGlc uptake was somewhat less than that seen in the non-infected cells. In addition, a sharply labeled peak was produced only in the AcMPV-GTL-infected membranes labeled with [$^3H$] cytochalasin B in the presence of L-glucose. No peak of labeling was seen in the membranes prepared from the uninfected cells. Furthermore, photolabeling of the expressed protein was completely inhibited by the presence of D-glucose, demonstrating the stereoselectivity of labeling.

Anti-inflammatory and Cytotoxic Screening Evaluation of Macroalgae Resources (국내 해조류 자원의 항염증 및 세포독성 스크리닝 평가)

  • Kim, C.W.;Chang, K.J.;Kim, Y.B.;Kim, D.H.;Chae, C.J.;Choi, H.G.;Koo, H.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.2
    • /
    • pp.69-79
    • /
    • 2020
  • In this study, the anti-inflammatory and cytotoxic effects of hot-water extracts from 10 kinds of macroalgae in Korea were investigated. It was selected materials in consideration of biological activity and industrial potential as follows: Caulerpa okamurae; Codium fragile; Ulva australis; Ishige foliacea; Saccharina japonica; Sargassum horneri; Undaria pinnatifida; Gloiopeltis tenax; Gracilaria verrucosa; Porphyra tenera. Results showed that S. japonica and G. tenax significantly decreased NO productionn in LPS-stimulated Raw 264.7 cells at concentrations of 100, 1000 ㎍/mL and 1000 ㎍/mL, respectively. However, most of the other macroalgae used in the experiment did not affect NO production. It was observed that all macroalgae extracts except for the highest concentration (1000 ㎍/mL) treatment group of P. tenera did not affect the viability in Raw 264.7 cells. In addition, there was not significant decrease in cell viability by macroalgae extracts treatment in HINAE cells. These results suggest that S. japonica and G. tenax could be used as potential safe natural anti-inflammatory agents for food and feed additives. Also, the results of this study are expected to be used as basic data for the development of functional materials for 10 kinds of macroalgae resources in Korea.

The Comparative Studies on the Terrestrial Insect Diversity in Protected Horticulture Complex and Paddy Wetland (시설원예단지와 논습지의 육상곤충 다양성 비교분석)

  • Son, Jin-Kwan;Kong, Min-Jae;Kang, Dong-Hyeon;Kang, Bang-hun;Yun, Sung-Wook;Lee, Si-Young
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.386-393
    • /
    • 2016
  • Agricultural ecosystem is recognized as a space for providing a variety of services, in addition to the food production that it originally encompassed, such as water purification, biological habitat, air purification, soil conservation, and landscape development. The construction of greenhouses in agricultural landscapes can cause deterioration of ecosystem services because of the increase of impermeable area and loss of biological habitats. This study aimed to compare insect diversity between different types of constructed greenhouses and paddy ecosystems. The target study area was selected by considering the distribution status of horticultural complexes and was classified as Single Vinyl Greenhouse, Multi Vinyl Greenhouse or Glass Greenhouse and they were compared with four paddies. The study locations were in Gu-Mi, Bu-Yeo, Ginje and Jin-Ju. A total of 2,333 individual insects belonging to 9 orders, 38 families, 76 genus, and 80 species were collected. The composition of orders was Hemiptera (22.37%), Coleoptera (18.42%), Hymenoptera (14.47%), Orthoptera (11.84%), and Diptera (10.53%). The average number of collected species were in the order Paddy (39.38 species) > Single Vinyl Greenhouse (35.50 species) > Multi Vinyl Greenhouse (22.50 species) > Glass Greenhouse (24.00 species). The Diversity Index (H') was Paddy (4.76) > Single Vinyl Greenhouse (4.57) > Multi Vinyl Greenhouse (4.12), and Glass Greenhouse (4.12). The Richness Index (RI) was Paddy (7.72) and Single Vinyl Greenhouse (7.03) > Multi Vinyl Greenhouse (4.99) and Glass Greenhouse (5.32). From our results, it can be seen that the biological diversity features of insects decreased when greenhouses are constructed.However, Single Vinyl Greenhouse is noted to promote insect diversity more than that by Multi Vinyl Greenhouse and Glass Greenhouse. Hence, when constructing greenhouses, it is necessary to consider insect habitat to conserve insect diversity.

Microbiological and Chemical Changes of Complete Feed during Spoilage (배합사료의 부패 동안 발생하는 미생물학적 및 영양학적 변화)

  • Yi, Kwonjung;Yeon, Jae-Sung;Kim, Juhyeon;Kim, Sam Churl;Moon, Hyung-In;Jeon, Che Ok;Lee, Sang Suk;Kim, Dong-Woon;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1148-1155
    • /
    • 2015
  • Commercial complete feeds contain enough nutrients to support animal growth and it is easy to be spoiled under proper temperature and humid conditions. The aim of this study was to investigate microbiological and chemical changes on complete feed for milking cow under open-air exposure with moisture 33% at 30℃ during 15 days. pH decreased 6.29 to 4.66 and water activity decreased gradually 0.99 to 0.95. Bacteria increased 6.2×106~1.6×107 to 2.1×109 CFU/g at 5 days and showed 108 CFU/g until 15 days. Fungi increased 103 CFU/g to 8.0×104 CFU/g. During the processing of spoilage, bacteria such as Acinetobacter oleivorans, Pediococcus acidilactici, Acinetobacter oleivorans, Weissella cibaria, and Methylobacterium komagatae were identified and fungi such as Fusarium sp. and Mucor sp. were also identified. Moisture content increased until 10 days (p<0.01). Crude protein was not changed so much whereas crude fat decreased 6.0% to 5.5% (p<0.01). Crude fiber and crude ash changed 2.0~ 3.0% and 4.5~ 4.8% levels with no significance, respectively. Gross energy was not almost changed at 4,400 kcal/g. During spoilage, lactate and propionate increased whereas acetate was not detected. Protease and lipase activities increased significantly during spoilage (p<0.01). Zearalenone content increased 59.2 μg/kg to 623.8 μg/kg, showing 10.5 times more production. During feed spoilage, pH decreased with microbial growth and various chemical changes were occurred.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Physico-chemical, Nutritional, and Enzymatic Characteristics of Shiitake Spent Mushroom Substrate (SMS) (표고버섯 수확 후 배지의 이화학적, 영양적, 효소적 특성)

  • Sung, Hwa-Jung;Pyo, Su-Jin;Kim, Jong-Sik;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1339-1346
    • /
    • 2018
  • In Korea, edible mushrooms are produced largely on commercial artificial media, so the annual production of spent mushroom substrate (SMS), as a by-product of the mushroom industry, is estimated at over 200 million tons. This SMS is assumed to contain abundant fungal mycelia and pre-fruiting bodies, as well as various nutritive and bioactive compounds that are presently discarded. This study examined the physico-chemical, nutritional, and enzymatic characteristics of uninoculated sterilized medium (USM) and SMS of shiitake mushrooms with the aim of developing a high-value added product from SMS. The contents of crude protein, crude lipid, and ash were higher after the third SMS harvest ($SMS-A-3^{rd}$) than in USM or $SMS-A-1^{st}$. The contents of Ca, Mg, and P in $SMS-A-3^{rd}$ were 2.95, 2.35, and 2.1-fold higher compared than in USM. No As or Cd was detected in USM or SMS. The pH, Brix, and acidity were 4.6, 20.0, and 1.4, respectively in $SMS-A-3^{rd}$, but 5.6, 6.0, and 0.0, respectively, in USM. These results suggest a highly active production of soluble components and organic acids in $SMS-A-3^{rd}$. The distinct color differences noted for USM, $SMS-A-1^{st}$, and $SMS-A-3^{rd}$ could be used as a mycelial growth indicator. Enzyme activity assays using the APIZYM system showed that SMS is a potent source of hydrolysis-related enzymes, especially esterase (C4) and ${\beta}$-glucuronidase. Our results suggested that the SMS of shiitake has a high potential for use in environmental, agricultural, and stock-breeding industries, for example, as active ingredients for sewage treatment, waste-polymer degradation, and feed additives.

Evaluation of Antimicrobial, Antioxidant, and Antithrombin Activity of Domestic Fruit and Vegetable Juice (국내 시판 과일 및 야채 주스의 항균, 항산화 및 항혈전 활성)

  • Lee, Man-Hyo;Kim, Mi-Sun;Shin, Hwa-Gyun;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.146-152
    • /
    • 2011
  • In the course of a study in relation to the production of taste, and functional enhancements in root crop chips, which were prepared by soaking dried yam slices in fruit juices, we investigated the physiological characteristics and biological activities of 8 different commercially available juices including; apple, omija (fruit of Maximowiczia typica), grape, wild grape, orange, tomato, red ginseng and black garlic juice. The average water contents, pH, brix and acidity of the juices used were $85.59{\pm}5.80%$, $3.90{\pm}0.64$, $12.19{\pm}4.70%$, and $0.49{\pm}0.19%$, respectively. The polyphenol content of black garlic and grape juice were 1.50 and 1.21 mg/ml, respectively, and those were higher than the average content (0.57 mg/mL) of the juices. Evaluation of anticoagulation activity showed that only omija juice has a strong thrombin inhibition, which is comparable to that of aspirin (1.5 mg/mL). Omija, grape and orange juice all exhibited antibacterial activity, but no antifungal activity. The 8 different juices, and in particular grape and black garlic juice, showed strong antioxidant activity in DPPH and ABTS radical scavenging activity assays, with wild grape juice demonstrating potent nitrite scavenging activity. These results suggest that omija, grape and black garlic juice can be used as soaking solutions to produce taste, and other functional enhancements, for root crop chips.

Selective Removal of Acetic Acid for the Effective Production of Succinic Acid using the Various Amino Extractants and Solvents (효율적 숙신산 생산을 위한 다양한 아민추출제와 용매를 이용한 아세트산의 선택적 추출제거)

  • Huh Yun Suk;Hong Yeon Ki;Jun Young-Si;Hong Won Hi
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.238-243
    • /
    • 2005
  • Succinic acid has recently been drawing much interest as a raw material for biodegradable polymer. In this study acetic acid was removed by reactive extraction with various amines dissolved in various diluents. Distribution coefficients were determined as the kind of amines, diluents, and pHs of continuous phase. The extraction capacity increased with the polarity of diluent and the decrease of pH from the artificial binary solution. Based on the different extractability for succinic acid and acetic acid from the artificial binary solution, the removal of acetic acid from fermentation broth was investigated using various amines and diluents. In addition, the extractability and selectivity of CLA for succinic acid and acetic acid from fermentation broth were higher than that of straight solvent extraction.

Gibberellin A7 production by Aspergillus tubingensis YH103 and cultural characteristics of endophytic fungi isolated from Tetragonia tetragonoides in Dokdo islands (독도 번행초에서 분리된 내생균류의 배양적 특성과 Aspergillus tubingensis YH103의 gibberellin A7의 생산)

  • You, Young-Hyun;Park, Jong Myong;Lim, Sung Hwan;Kang, Sang-Mo;Park, Jong-Han;Lee, In-Jung;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.32-39
    • /
    • 2016
  • Coastal plant species Tetragonia tetragonoides (Pall.) Kuntze native to the Dokdo islands was sampled and then 17 endophytic fungi were purely isolated based on morphological differences. The fungal isolates were characterized by their growth properties under NaCl concentration or pH gradient. Culture filtrates of the 17 fungal isolates were treated to Waito-c rice (WR) seedlings for verifying plant growth-promoting activity. As the results, YH103 strain showed the highest plant growth-promoting activity among them. Phylogenetic analysis of the isolates was done by the maximum likelihood method based on partial internal transcribed spacer region (ITS region: contaning ITS1, 5.8S, and ITS2), beta-tubulin (BenA), and calmodulin (CaM) gene sequences. Chromatographic analysis of the strain YH103 culture filtrate showed the existence of gibberellins ($GA_4$, $GA_7$, $GA_8$, and $GA_{19}$). Finally, the strain YH103 was identified as Aspergillus tubingensis by microscopic observation and molecular analysis and, to our knowledge, this is the first report of GAs producing A. tubingensis.