• Title/Summary/Keyword: Biodegradation rate

Search Result 319, Processing Time 0.031 seconds

A Case Study of Monitored Natural Attenuation at a Military Site Contaminated by Petroleum Hydrocarbon in Korea (국내 유류오염 군부지 내 자연저감기법 적용 사례 연구)

  • Lee, Hwan;Kang, Seonhong
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.5
    • /
    • pp.333-344
    • /
    • 2016
  • In this study, the efficiency of natural attenuation was evaluated through the hydrogeological characteristics such as monitoring and analyses, tracer tests, chemical composition analysis of the groundwater at a military site contaminated by petroleum hydrocarbon in korea. Also, based on the results, the natural attenuation rate by distance and the expressed biodegradation capacity(EBC) was evaluated. The regression slope of -0.0248($K/V_x$) and bulk attenuation rate of $1.7{\times}10^{-3}/day$ were calculated respectively. The range of total expressed biodegradation capacity(EBC) of BTEX was shown from 9.1 mg/L to 10.0 mg/L(average 9.7 mg/L). It was confirmed that the denitrification which was expressed about 63.6% in the total EBC is the largest influence redox process. Consequently, the biodegradation capacity is considered to be sufficient for remediation in the BTEX average concentration of 1.326 mg/L.

Biodegradation Characteristics of Toluene in a Soil-Bioreactor (토양생물반응기내 Toluene의 분해 특성)

  • Kim, Chul Kyung
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.199-203
    • /
    • 2002
  • To investigate the optimal conditions for biodegradation of toluene by Pseudomonas fluorescens KCTC 1767 in a batch soil-bioreactor, the effects of rpm change from 60 to 180, and temperature change from $15^{\circ}C$ to $30^{\circ}C$ in a batch culture and the flow rate change from 55 mL/min to 85 mL/Min in soil-bioreactor on the biodegradation of toluene were studied. In a batch culture the optimal operating conditons were 60 rpm, and $30^{\circ}C$ at initial pH 7, In a soil-bioreactor the optimal flow rate was 55 mL/min in the flow rate of circulation. The lower flow rate of circulation may help to biodegrade toluene adsorped in soil and dissolved in underground water.

  • PDF

Lignocellulose Biodegradation and Interaction between Cellulose and Lignin under Sulfate Reducing Conditions (황산염 환원 조건에서 리그노셀룰로오스의 분해 및 리그닌과 셀룰로오스의 상호작용)

  • Ko, Jae-Jung;Kim, Seog-Ku;Shimizu, Yoshihisa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.131-137
    • /
    • 2007
  • In this study, the biodegradation test on lignocellulose under sulfate reducing conditions was carried out. In particular, the interaction between cellulose and lignin was investigated with various g-cellulose/g-lignin (C/L) ratios: 42.15, 4.59, 2.51, 1.14 and 0.7. It was shown that the rate of cellulose degradation decreased in proportion to the lignin content. Assuming first order degradation kinetics, the consequences of competitive inhibition were graphically shown for different C/L ratios. The relation between cellulose reduction rate and C/L ratio was expressed by logarithm function with a determination coefficient of 0.97. Lignocellulose reduction rate was also described as a logarithm function of C/L ratio showing a inhibition effect by lignin. In the mean time, the rate of lignin decomposition was higher at C/L ratio of 2.51 and 1.14 compared with C/L ratios of 4.59 and 0.7, indicating that excessive extra carbon source is not appropriate for lignin biodegradation.

  • PDF

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF

Sewage Disposal by Different Structure of Fluidized Bed Biofilm Reactor (유동층 생물반응기의 구조변화에 따른 하수처리)

  • Park, Jong-Man;Lee, Jae-Yong;Kim, Chul-Kyoung;Koh, Chang-Woong;Kim, Nam-Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.181-187
    • /
    • 2004
  • The purpose of this study is to investigate the biofilm reactors capable of doing high efficiency treatment. Vertical fluidized bed biofilm reactor(VFBBR) and spiral fluidized bed biofilm reactor(SFBBR) was used for their performence in biodegradation of artificial sewage. The factors influencing the efficiency of those reactors were compared with difference of physical condition. They had same size but different structure to gain access of its unique characteristics. When recycle solution with flow rate of 22 mL/min and artificial sewage with flow rate of 2~10 mL/min were fed into two reactors in aerobic state, the average $COD_{cr}$, removal rate for biodegradation of SFBBR was greater than VFBBR. After reactor feed sewage was constantly maintained as flow rate of 4 mL/min and the recycle solution were changed to 10~32 mL/min respectively, the average $COD_{cr}$ removal rate of artificial sewage in SFBBR was greater than VFBBR. In this experiment for addition of support media into two reactors SFBBR was 4.1% excellent than VFBBR. Above all, SFBBR excelled VFBBR in boidegradation of organic matter in sewage.

Enhanced Degradation of Quinoline by Immobilized Bacillus Brevis (고정화된 Bacillus Brevis에 의한 큐놀린 분해의 증가)

  • S., Balasubramaniyan;M., Swaminathan
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • Biodegradation of Quinoline by free and immobilized Bacillus brevis has been investigated. The rate of quinoline degradation by immobilized Bacillus brevis on coconut shell carbon is faster than the rate by the microorganism immobilized on foam pieces and free cells. A complete removal of 100 ppm of Quinoline in the sample was achieved at a hydraulic retention time of 20 hours with the biocatalyst prepared by immobilizing Bacillus brevis onto coconut shell carbon. The biocatalyst had a reasonable shelf life and desirable recycle capacity.

Biodegradation of Trichloroethylene by Phenol-degrading Pseudomonas putida

  • Shin, Hyun-Jae;Lee, Moo-Yeal;Yang, Ji-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.185-187
    • /
    • 1998
  • Pseudomonas putida KCTC 2401 degrades 1,1, 2-trichloroethylene (TCE) using phenol as a cosubstrate. The initial TCE degradation rate decreased with the initial TCE concentration up to 20mg/l of TCE at $30^{\circ}C$ and pH 6.5. The initial degradation rate and total removal efficiency increased with inoculum size. The strain also degraded dichloroacetic acid, which was supposed to be a degradation by-product. Phenol monooxygenase apparently participates in the TCE degradation mechanism.

  • PDF

Relationship between Biodegradation of Biosynthetic Plastics, Poly-$\beta$-Hydroxybutyrate, and Soil Temperature (생합성 플라스틱 Poly-$\beta$-Hydroxybutyrate의 생분해와 토양온도의 관계)

  • 조강현;이혜미;조경숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.277-282
    • /
    • 1998
  • The microbial degradation of $poly-{\beta}-hydroxybutyrate$ (PHB) films was studied in soil microco는 incubated at a constant temperature of 2, 10, 20, 30 and $40^{\circ}C$ for up to 49 days. The degradation rate measured through loss of weight was enhanced by incubation at a higher temperature. At the soil temperature $40^{\circ}C$, $poly-{\beta}-hydroxybutyrate$ was rapidly degraded at a decay rate of 3.5% weight loss per day. The degradation of $poly-{\beta}-hydroxybutyrate$ did not affected significantly the chemical properties of soils such as pH and electric conductivity. However, microbial activity of soil in terms of dehydrogenase activity was increased by the degradation of $poly-{\beta}-hydroxybutyrate$.

  • PDF

Anaerobic Bioconversion Potential of Blue Crab Processing Waste and Wastewater(I) (꽃게(Blue Crab) 가공 식품 제조 공정상 발생된 폐수 및 폐기물의 혐기성 생분해 가능성(I))

  • Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.54-62
    • /
    • 1997
  • Disposal of blue crab wastes represents a significant problem to processors, who are limited with respect to acceptable disposal alternatives. Anaerobic bioconversion technology was investigated to determine an environmentally sound and economic disposal method for these wastes. In the study ultimate methane yield for total crab solid waste was $0.180m^3/kg$ VS added and biodegradation rate constant was $0.15day^{-1}$. Methane yield of the bench-scale reactor operated on similar feedstock was $0.189m^3/kg$ VS added and biodegradation rate constant was $0.06day^{-1}$. These results indicate that anaerobic bioconversion of blue crab wastes was technically feasible. Use of anaerobic bioconversion technology can be an attractive option for blue crab processing waste management. The by-product methane gas could be used for maintainign a number of processing operations (i.e., heat for cooking, or keeping temperature of digester constant).

  • PDF

Biodegradation of and comparison of adaptability to dectergents (미생물에 의한 계면활성제의 분해능과 적응력의 비교)

  • 이혜주;홍순우
    • Korean Journal of Microbiology
    • /
    • v.18 no.4
    • /
    • pp.155-160
    • /
    • 1980
  • Microorgansims utilizing anionic detergent as their carbon and sulfur sources were isolated from soils and sewages. Alkyl benzene sulfonate (Hiti) and sodium dodecyl sulfonate (SDS) were the detergent compound tested. Three of these isolated microorganisms were identified as Pseudomonas spp. and the others asKlbsiella, Enterobacter and Acinetobacter. Biodegradation rate of the detergents and growth rate of Acinetobacter Strain II-8, Pseudomonas strain H-3-1 and 554 among six isolated microorganisms were investigated with colorimetric, warburg manometric, and ultraviolet absorption analyses. By performance of 4 serial successive tranfer to new culture broth for the purpose of adaptation method, ABS and SDS could be degraded to far more than 40%-60% and 70%-75%, respectively. However the employment of nonadaptation method, ABS and SDS were degraded to 30%-45% and 45%-65%, respectively. In another words, detergents degradation ability was increased to a certain extent by successive transfer to the new minimal media. We would conclude that the development of adaptation was effective in the removal of recalcitrant compounds.

  • PDF