• 제목/요약/키워드: Biodegradation DOC

검색결과 23건 처리시간 0.017초

호소 및 하천에서 환경호르몬 Bisphenol-A의 분해거동에 관한 연구 (Degradation Behavior of Endocrine Disrupter Bisphenol-A in the Lake and Stream)

  • 강호;신경숙;김선기;진창숙
    • 환경생물
    • /
    • 제19권1호
    • /
    • pp.59-69
    • /
    • 2001
  • 본 연구는 자연수중의 미생물을 식종원으로 하는 TOC-HANDAI법과 OECD 생분해법을 활용하여 자연수 환경내에서 환경호르몬물질인 비스페놀 A와 노닐페놀의 생분해성을 비교평가하였다. TOC-HANDAI법에 의한 BPA분해는 73-78% 이었고 OECD법은 이보다 다소 높은 77-81%를 나타내었다. 두 방법을 통한 BPA의 분해양상은 대체로 2단계를 거쳐 진행되었다. 즉 초기 1주일 이내에는 분해반응속도(k$_1$)가 0.24-0.34day$^{-1}$로 아주 빠르게 분해되었고, 그 후에는 아주 완만한 분해양상을 나타내었다(k$_2$는 0.02-0.05 $day^{-1}$). 이는 BPA가 자연수계에서 TOC로 약 20-25%가 중간생성물로 잔존하고 있음을 시사해 주고 있으며, 이 중간대사물이 완만한 분해과정에 기여하고 있다. 수계 환경에 따라 분해율이 현저하게 차이를 보이지만 노닐페놀은 20-48% 정도 밖에 분해되지 않는 난분해성 환경호르몬 물질임을 알 수 있다. 한편, 금강수계내 조사대상 하천과 대청호수의 조사지점에서 BPA는 모두 불검출되었다. 그러나 공단폐수 종말처리장 유입수에서 평균 25 ppb가 검출되었다.

  • PDF

CHARACTERIZATION OF RECALCITRANT DISSOLVED ORGANIC MATTER IN LAKE AND INFLOW RIVER WATERS

  • Kim, Yong-Hwan;Lee, Shun-Hwa;Kim, Jung-Ho;Park, Jong-Woong;Choi, Kwang-Soon
    • Environmental Engineering Research
    • /
    • 제11권4호
    • /
    • pp.181-193
    • /
    • 2006
  • The hydrophilic or hydrophobic characteristics of dissolved organic matter (DOM) from different origins in lake and river waters were investigated using spectrometric and chromatographic analyses of water samples. DOM in a deep, mesotrophic lake (Lake Unmun) was fractionated using three types of ion exchange resins and classified into aquatic humic substances (AHS), hydrophobic neutrals (HoN), hydrophilic acids (HiA), hydrophilic neutrals (HiN), and bases (BaS). The DOM fractionation provided insight into the understanding of the nature of heterogeneous DOM molecules present in different water sources. The UV/DOC ratios were determined for samples from the influent river and lake waters during DOM fractionation and incubation. AHS prevailed over DOM in the lake and river waters. After biodegradation, the relative contribution of AHS in the total DOM became more significant. It indicates that the AHS fraction would increase while water stay long time in the lake.

한강수계 고도정수처리 공정에서의 유기물과 맛·냄새의 제거특성 (Removal Characteristics of Natural Organic Matter and Taste and Odor by Advanced Water Treatment Process around the Han River Water Supply System)

  • 임재림;이경혁;김성수;채선하
    • 상하수도학회지
    • /
    • 제21권1호
    • /
    • pp.13-25
    • /
    • 2007
  • The water treatment plants in Seoul Metropolitan Area, which are under Korea Water Resources Corporation(KOWACO)'s management, take water from Paldang Reservoir in Han River System for drinking water supply. There are taste and odor (T&O) problems in the finished water because the conventional treatment processes do not effectively remove the T&O compounds. As part of countermeasures for taste and odor control, KOWACO is planning to introduce advanced water treatment process such as ozone and GAC in near future. This study evaluated the removal characteristics of T&O and dissolved organic matter (DOM) to find design and operation parameters of advanced water treatment processes in a pilot-scale treatment plant. The GAC adsorption capacity for DOC in the two GAC system (GAC and $O_3$-GAC) at an EBCT of 14min was mostly exhausted after 9months. The differency of the removal efficiency of DOC between $O_3$-GAC and GAC increased with increasing operation time because the bioactivity in $O_3$-GAC process was enhanced by post-ozone process. Removal by conventional treatment was unable to reach the target TON(threshold odor number) of 3 but GAC systems at an EBCT(empty bed contact time) of 14 min were able to archive the target with few exception. During the high T&O episodes, PAC as a pretreatment together with GAC could be useful option for T&O control. However, substantial TON removal continued for more than two year (> 90,000 bed volumes). At the spiking of less concentration 26 to 61 ng/L in the influent of GAC systems, GAC absorber and $O_3$-GAC processes could meet the treatment target. The better spike control after 12 and 19 months of operation compared to that after 7 months of operation is a strong indication of biological control. The results presented in this study had shown that $O_3$-GAC process was found to be more effective for T&O control than GAC process. And the main removal mechanism in GAC systems were adsorption capacity and biodegradation.