• Title/Summary/Keyword: Biodegradation

Search Result 1,036, Processing Time 0.036 seconds

Bioavailability of sorbed phenanthrene in soil slurries (토양 슬러리내에 수착된 phenanthrene의 생물학적 이용성)

  • 신원식;김영규;김영훈;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.92-95
    • /
    • 2002
  • Bioavailability study was conducted to elucidate the relationship between sorption/desorption and biodegradation of sorbed phenanthrene in seven different soils. Mineralization kinetics was determined for phenanthrene-sorbed soil slurries inoculated with Pseudomonas putida (ATCC strain 17484). Two biodegradation models were used to fit mineralization kinetics; (i) a first-order degradation model and (ii) a coupled degradation-desorption model. The biodegradation rates were in order of vermicompost >Bion peat > 50% organoclay > Pahokee > blank (no soil, medium only) > montmorillonite > Ohio shale. The mineralization rate constants increased as desorption-resistance of phenanthrene increased. Among the tested sorbents, active biodegradation of phenanthrene was observed in vermicompost and Bion peat. Biodegradation in these two sorbents exhibited little lag time and a high maximum mineralized capacity. The role of sorption/desorption in bioavailability of phenanthrene sorbed in soils was discussed.

  • PDF

Biodegradation Rate of Recycling Soap Prepared from Non-Cooking Oils (폐식용유로 제조된 재생비누의 생분해 속도)

  • 신춘환;김희숙;허근태
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • A recycling soap was prepared from non-cooking oils. The effects of physlcal and chemical properties of the recycling soap on biodegradation are expected to be different due to the thermal histories of the non-cooking oils. Therefore, the biodegradation rate of the recycling soap was studied by using Klebssella Pneumoniae(K. pneumoniae), and the growth rate of K. pnewoniae in soap solution was observed. The biodegradation rate of the recycling soap appeared to be slower as the thermal histories of the non-cooking oils became larger. This might be resulted from hydrolysis, in which the ester bonds in the oils are broken to produce hydroxyl group. It was also observed that the growth rate of the microorganism decreased with the increase in the thermal histories of the oils. As a result, it is desired that recycling soap should be produced from the non-cooking oils with the prober ranges of thermal histories to reduce water contamination. The non-cooking oils with larger thermal histories are considered to be recycling through the cracking process before used. Key Words : non-cooking oils, recycling soap, thermal history, biodegradation, microorganism growth.

  • PDF

Biodegradation of Pyrene in Marine Environment (해양환경에서 Pyrene의 생분해)

  • 황순석;송홍규
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 1999
  • The biodegradation of recalcitrant polycyclic aromatic hydrocarbon, pyrene was investigated in microcosm simulating the beach sand and seawater. The natural biodegradation rates of pyrene were between 30-2,200 ng/g(ml)/day in beach sand and seawater when the pyrenc loading rates were 100- 1,000 ppm at 5-$20^{\circ}C$. The effects of the inoculum size, pyrene concentralion, incubation temperature and surfactant addition were investigated in fertilized (Inipol EAP 22) samples. Generally the biodegradation in beach sand was higher than that in seawater. A mixed inoculum (Pseudomonus, Acinetobacter, Moruxella) showed the 3,120 nglglday of biodegradation rate in beach sand with 200 ppm pyrene, which was 7.8 times higher than the natural biodegradation rate. The highest transformation rate, 4,860 ng/g/day was obtained in the bioaugmented beach sand (1,000 ppm pyrene). The glucose and surfactant addition to enhance the removal have negatively influenced on the biodegradation of pyrene. In case ol surfactants, CMC (critical micell concentration) might bc the control factor for the biodegradation.

  • PDF

Characteristics of Biodegradation of Organic Matters in the Nakdong River Watershed (낙동강 수계 내 유기물 시료에 따른 생분해 특성)

  • Kim, Jung Sun;Kang, Lim Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.605-611
    • /
    • 2014
  • This research was carried out to examine the concentration and fate of dissolved organic matter due to the increased detention time in middle and down stream of the Nakdong River. Aldo the characteristics of biodegradation of DOM were investigated according to the various water sources. The approaches used to characterize DOM biodegradability include the changes in DOC concentration and DOM fraction. Long-term biodegradation test for each organic source was also conducted. As the result, maximum 50% of DOC was reduced during the first 30 days of biodegradation tests. After 30 days, biodegradation of organic matter was continuously progressed, as showing continuous reduction of DOC. While DOC concentration was reduced, SUVA values for the organic matters were increased. Properties of dissolved organic matter by water sources also showed decreasing hydrophilic components while showing increased hydrophobic components. The more rapid reduction of the hydrophilic components than hydrophobic components might be due to the preferential degradation of the hydrophilic components by microorganisms during biodegradation process.

Relationships between Biodegradation and Sorption of Phenanthrene in Slurry Bioremediation

  • ;;Bruce E. Rittmann
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.171-176
    • /
    • 2000
  • Bioremediation of hazardous hydrophobic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), is a major environmental concern due to their toxic and carcinogenic properties. Due to their hydrophobicity, the hydrophobic organic compounds are mainly associated with the soil organic matter or nonaqueous-phase liquids. A major question concerns the relationships between biodegradation and sorption. This work develops and utilizes a non- steady state model for evaluating the interactions between sorption and biodegradation of phenanthrene, a 3-ring PAH compound, in soil-slurry systems. The model includes sorption/desorption of a target compound, its utilization by microorganisms as a primary substrate existing in the dissolved phase and/or the sorbed phase in biomass and soil, oxygen transfer, and oxygen utilization as an electron acceptor. Biodegradation tests with phenanthrene were conducted in liquid and soil-slurry systems. The soil-slurry tests were performed with very different mass transfer rate: fast mass transfer in a flask test at 150 rpm, and slow mass transfer in a roller-bottle test at 2 rpm. In the slurry tests, phenanthrene was degraded more rapidly than in liquid tests, but with a similar rate in both slurry systems. Modeling analyses with several hypotheses indicate that a model without biodegradation of compound sorbed to the soil was not able to account for the rapid degradation of phenanthrene, particularly in the roller bottle slurry test. Reduced mass-transfer resistance to bacteria attached to the soil is the most likely phenomenon accounting for rapid sorbed-phase biodegradation.

  • PDF

Optimization of Cometabolic Trichloroethylene Degradation Conditions by Response Surface Analysis (반응표면 분석법을 이용한 트리클로로에틸렌의 공대사적 분해조건 최적화)

  • 윤성준
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.393-397
    • /
    • 2000
  • The cometaboic biodegradation conditionso f trichloroethylene(TCE) by Burkholderia cepacia G4 were optimized using response surface analysis. The experimental sets of phenol concentration temperature and pH were designed using central composite experimental design. The optimal conditions of phenol concentration temperature and pH were determined to be 0.91 ppm 21.5$^{\circ}C$ and 7.65 respectively by the Ridge analysis of the contour plot for TCE biodegradation rates. The TCE biodegradation rate could be enhanced up to 2.43 nmol.mg protein$.$min by response surface methodology.

  • PDF

Aquifer Microcosm Test for BTEX Biodegradation (Aquifer Microcosm 실험을 통한 BTEX 생분해에 관한 연구)

  • 박재형;권수열;고석오;최의소
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.163-166
    • /
    • 2000
  • The purpose of this study is to evaluate substrate interactions of BTEX for multicomponent. Although BTEX compounds have similar chemical structures, biodegradation of individual BTEX is different with the present of certain BTEX compounds. The biodegradation rate is order to Benzene=Toluene>Ethylbenzene> m, p-Xylene>o-Xylene. Xylenes is stimulated when benzene or toluene is present. Especially o-xylene Inhibit other BTEX compounds.

  • PDF

Effect of Hydrocarbon Uptake Modes on Oil Degradation Rate by Mixed Cultures of Petroleum Degraders (Hydrocarbon Uptake Modes에 따른 유류분해 미생물 혼합체의 원유분해능)

  • 고성환;이홍금;김상진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.606-614
    • /
    • 1998
  • In this study, biodegradation rate of Arabian light crude oil by mixed cultures of selected petroleum-degraders was determined. Their modes of hydrocarbon uptake were then observed to determine whether there are differences in biodegradation rate by the mixed cultures. By the mixed cultures of petroleum-degraders having same modes of hydrocarbon uptake, such as strain US1 and K1 (using pseudo-solubilized hydrocarbons by a biosurfactants), K2-2 and P1(using hydrocarbons by direct contact), CL 180 and IC-10 (mixed type of uptake modes), the biodegradation rates of aliphatics in the crude oil were increased more than those by their pure cultures, about 40%, 25% and 20%, respectively. Biodegradation rate of strain KH3-2 (using only water- dissolved hydrocarbons) was increased by mixed cultures with strain K1, CL180 or IC-10 possessing high emulsifying activity. However, the biodegradation rate of the crude oil was decreased about 20%-40% by the mixed cultures of petroleum-degraders having different mode of hydrocarbon uptake, such as addition of strain US1 or K1 in the cultures of K2-2 or P1. Biosurfactants produced by US1 or K1 seems to enhance the emulsification of crude oil in aqueous phase but inhibit the attachment of K2-2 or P1 to crude oil. As same phenomena, the addition to Triton X-100 into the culture of strain US1, K1, CL180, IC-10 or KH3-2 increased the biodegradation rate, but the addition in the culture of strain K2-2 or P1 decreased the biodegradation rate. The mixed culture made of CL180, IC-10 and KH3-2 degraded 61.5% of aliphatics and 69% of aromatics in 3% (v/v) of Arabian light crude oil added.

  • PDF

Characteristics of Biodegradation under Composting and Vermiculite Condition (폐 MDF 퇴비화 사용을 위한 생분해 환경 특성에 관한 연구 (I))

  • Choi, Chul;Yoo, Ji-Chang;Yang, Seong-min;Lee, Chang-goo;Lee, Seok-eon;Kang, Seog-goo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.127-133
    • /
    • 2016
  • This study is performed that furniture and interior materials of MDF's (Medium Density Fiberboard) biodegradation properties, and the goal of this study is investigation of possibility of waste-MDF's composting after landfilling. To investigate biodegradation, this study was performed according to KS M ISO 14855-1, and there were two different soil conditions including a compost condition and an activated vermiculite condition as artificial soil. This experiment was tested for 40 days. The measurement of carbon-dioxide generation was processed every 24 hour in 1-2 week, and every 48 hour after 3 week. In the same days, MDF showed 24.4% of biodegradation in compost condition, and 6.2% in activated vermiculite. Also, the reference material of TLC (thin-layer chromatography) grade cellulose showed 26.4%, 11.4% in compost and activated vermiculite respectively. The dilution plate method was performed for biological analysis in the study. This experiment was used for investigation of inoculum's (Bacillus licheniformis) activity. As the result of bioassay, compost has more other germs include inoculum than activated vermiculite in the first week. Especially in the 2nd week, the reference material under the compost condition showed the most germ's activity, and also the biodegradation was the highest. Consequentially, compost condition was able to reduce a performing period of biodegradation testing than activated vermiculite. However, activated vermiculite could be stabilizing errors between repetition.

Biodegradation of Ochratoxin A by Aspergillus tubingensis Isolated from Meju

  • Cho, Sung Min;Jeong, Seong Eun;Lee, Kyu Ri;Sudhani, Hemanth P.K.;Kim, Myunghee;Hong, Sung-Yong;Chung, Soo Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1687-1695
    • /
    • 2016
  • Ochratoxin A (OTA), a mycotoxin, contaminates agricultural products and poses a serious threat to public health worldwide. Microbiological methods are known to be a promising approach for OTA biodegradation because physical and chemical methods have practical limitations. In the present study, a total of 130 fungal isolates obtained from 65 traditional Korean meju (a fermented starter for fermentation of soybeans) samples were examined for OTA-biodegradation activity using thin-layer chromatography. Two fungal isolates were selected for OTA-biodegradation activity and were identified as Aspergillus tubingensis M036 and M074 through sequence analysis of the beta-tubulin gene. After culturing both A. tubingensis isolates in Soytone-Czapek medium containing OTA (40 ng/ml), OTA-biodegradation activity was analyzed using high-performance liquid chromatography (HPLC). Both A. tubingensis strains degraded OTA by more than 95.0% after 14 days, and the HPLC analysis showed that the OTA biodegradation by the A. tubingensis strains led to the production of ochratoxin α, which is much less toxic than OTA. Moreover, crude enzymes from the cultures of A. tubingensis M036 and M074 led to OTA biodegradation of 97.5% and 91.3% at pH 5, and 80.3% and 75.3% at pH 7, respectively, in a buffer solution containing OTA (40 ng/ml) after 24 h. In addition, the OTA-biodegrading fungi did not exhibit OTA production activity. Our data suggest that A. tubingensis isolates and their enzymes have the potential for practical application to reduce levels of OTA in food and feed.