• Title/Summary/Keyword: Biodegradable film

Search Result 114, Processing Time 0.031 seconds

Study on Degradation Rates of Biodegradable Polymers by Stereochemistry (입체화학을 이용한 생분해성 고분자의 분해속도에 관한 연구)

  • Park, Chan-Young;Choi, Yong-Hae;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.797-802
    • /
    • 2009
  • To control degradation rate of biodegradable poly(lactide)s (PLA), the stereochemical PLAs with different ratios of d-lactide and l-lactide units were synthesized by the ring open polymerization and the their degradation kinetics were measured by a Langmuir film balance. The alkaline (pH=11) degradation of poly(l-lactide) (l-PLA) monolayer showed the faster rate at a surface pressure of 4 mN/m in the ranges from to 0 to 7 mN/m. However, the enzymatic degradation of l-PLA with Proteinase K did not occur until 4 mN/m. Above a constant surface pressure of 4 mN/m, the degradation rate was increased with a constant surface pressure. These behaviors might be attributed to the difference in the contacted area with degradation medium: alkaline ions need small contact area with l-PLA while enzymes require much bigger one to be activated due to different medium sizes. The stereochmical PLA monolayers showed that the alkaline degradation was increased with their optical impurities while the enzymatic one was inversed. These results could be explained by the decrease of crystallinity with the optical impurity and the inactivity of enzyme to d-LA unit.

Effect of Grafted Biobased Acrylics on the Mechanical Properties of Polylactic Acid (PLA)/Starch Eco-Friendly Composite

  • Marcela, Godoy;Jonghwan, Suhr
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.419-424
    • /
    • 2022
  • Using non-biodegradable polymers is a severe environmental problem as they are not recyclable and generate a large amount of waste. Biopolymers, such as starch-based composites, have been considered one of the most promising replacement materials. These eco-friendly materials have the advantage of being low-cost, biodegradable, and obtained from renewable sources. However, as starch tends to be brittle and hydrophilic, it can make these materials unusable when exposed to water and limit its processability for further applications. In this work, a biobased modified starch was grafted using two bioderived materials, lauryl methacrylate (LMA) and tetrahydrofurfuryl methacrylate (THFMA), by radical polymerization. A polylactic acid (PLA) composite based on the modified starch (m-St) was fabricated to enhance its toughness. These samples were characterized by Fourier transform infrared, 1H NMR and 13C NMR analysis, optical and scanning electron microscopy. The starch was successfully grafted, thus improving the compatibility with the PLA matrix. The mechanical properties of these films were also studied. Results from mechanical tests showed a slight enhancement of the mechanical performance of these composites when m-St was added to the PLA matrix. Such behavior is related to the improved dispersion of m-St 1:2 on PLA, confirmed by SEM images showing enhanced compatibility between modified starch and PLA matrix. This indicated excellent properties of the produced composite film for further eco-friendly applications.

Effects of processing conditions on water vapor permeability and solubility of Alaska Pollack meal protein isolate film (가공조건이 명태어분단백질 필름의 수증기 투과도와 용해도에 미치는 영향)

  • YOU Byeong-Jin;SHIM Jae-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.413-417
    • /
    • 2000
  • The effects of film processing conditions on the water vapor permeability (WVP), the solubility of film's protein (SFP) and the soluble film's meterials amount (SFMA) were investigated to establish the conditions for preparing biodegradable and edible Alaska Pollack meal protein isolate (APMPI) film. ms of film were decreased with increasing plasticizer concentration but those were decreased with decrement of APMPI's pH values. SEPs were decreased with increasing APMPI's pH and plasticizer concentration. SFMAS were also strongly affected by plasticizer concentration and APMPI's pH. In the case of adding different plasticizers, WVP was increased in order as follows: glycerol, polyethylene glycol and sorbitol but SFMA showed inverse order.

  • PDF

Effect of Biodegradable Film Mulching on Soil Environment and Onion Growth and Yield (생분해성 멀칭필름이 토양환경과 양파 생육 및 수량에 미치는 영향)

  • Ji-Sik Jung;Do-Won Park;Hyun-Sug Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.207-215
    • /
    • 2023
  • This study was compared the soil environment and growth and yield of onion (Allium cepa L.) treated with non-mulching (NM) and mulching polyethylene film (PEF) and two biodegradable films (BFI and BFII) commonly used in farmhouses. Visual observation confirmed the degradation of BFI and BFII films after 150 days after tansplanting (DAT). BFII increased light penetration into the films and reduced the weight maintenace after 180 DAT, with a high decompostion at 30 days after soil tilling. Soil moisture contents much fluctuated between -14 kP and - 0 kPa in NM plots, increasing the minimum soil temperature of BFI plots. Mulching treatments decreased soil organic matter contents but did not subtantially increase soil mineral nutrients, soil bulk density, and number of bacteria compared to those of NM plots. Onion root growth was increased by PEF and BFI treatments at an early growth stage, 60 DAT, with the most remarkable stem extension observed for PEF and BFI treatments after 150 DAT. PEF and BFI treatments increased the bulb's diameter, length, weight, and lodging at 180 DAT. BFI treatments exhibited a high portion of the "very large" category producing with 55.3 tons ha-1 based on the classification into bulb size, followed by PE (49.3 tons), NM (9.4 tons), and BFII treatments (2.7 tons) at 230 DAT.

Structural Changes of Biodegradable Poly(tetramethylene succinate) on Hydrolysis

  • Shin, Jick-Soo;Yoo, Eui-Sang;Im, Seung-Soon;Song, Hyun-Hoon
    • Macromolecular Research
    • /
    • v.9 no.4
    • /
    • pp.210-219
    • /
    • 2001
  • Quenched and slow cooled as well as isothermally crystallized poly(tetramethylene succinate)(PTMS) films at two different temperatures were prepared. In the process of hydrolysis of the four specimens, structural changes such as the crystallinity, crystal size distribution, lattice parameter, lamellar thickness, long period and surface morphology were investigated by using wide and small angle X-ray scattering (WAXS and SAXS), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The hydrolytic degradation of quenched film was faster than that of slow cooled and isothermally crystallized films. The film crystallized at 100$\^{C}$ exhibited extensive micro voids and thus showed faster degradation than that crystallized at 75$\^{C}$, demonstrating surface morphology is another important factor to govern degradation rate. The crystallinity of the specimen increased by 5-10% and long period decreased after hydrolysis for 20 days. At the initial stage of degradation, the lamellar thickness of quenched film rather increased, while that of slow cooled and isothermally crystallized films decreased. The hydrolytic degradation preferentially occurred in the amorphous region. The hydrolytic degradation in crystal lamellae are mainly at the crystal surfaces.

  • PDF

Nanofabrication of Microbial Polyester by Electrospinning Promotes Cell Attachment

  • Lee, Ik-Sang;Kwon, Oh-Hyeong;Wan Meng;Kang, Inn-Kyu;Yoshihiro Ito
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.374-378
    • /
    • 2004
  • The biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as nanofibrous mats by electrospinning. Image analysis of the electrospun nanofibers fabricated from a 2 wt% 2,2,2-trifluoroethanol solution revealed a unimodal distribution pattern of fiber diameters with an observed average diameter of ca. 185 nm. The fiber diameter of electrospun fabrics could be controlled by adjusting the electro spinning parameters, including the solvent composition, concentration, applied voltage, and tip-to-collector distance. Chondrocytes derived from rabbit ear were cultured on a PHBV cast film and an electrospun PHBV nano-fibrous mat. After incubation for 2 h, the percentages of attached chondrocytes on the surfaces of the flat PHBV film and the PHBV nanofibrous mat were 19.0 and 30.1 %, respectively. On the surface of the electrospun PHBV fabric, more chondrocytes were attached and appeared to have a much greater spreaded morphology than did that of the flat PHBV cast film in the early culture stage. The electro spun PHBV nanofabric provides an attractive structure for the attachment and growth of chondrocytes as cell culture surfaces for tissue engineering.

Heat-Treated Polyvinyl Alcohol/Cellulose Nanocrystal Film with Improved Mechanical Properties and Water Resistance (내수성 및 기계적 물성이 향상된 열처리된 폴리비닐알코올/셀룰로오스 나노결정 필름)

  • Nguyen, Son Van;Lee, Bong-Kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.1-8
    • /
    • 2021
  • In this study, the water resistance and mechanical properties of heat-treated polyvinyl alcohol (PVA)/cellulose nanocrystal (CNC) films were investigated. PVA is the most commonly used synthetic biodegradable polymers owing to its excellent properties. However, the water/moisture sensitivity and relatively poor mechanical properties of PVA limits its applications. Although heat treatment is a conventionally used method to improve the mechanical strength and water resistance of PVA, the effectiveness of this method is insufficient. Therefore, CNC was used to further improve the mechanical properties and water resistance of the heat-treated PVA film. PVA/CNC nanocomposites containing CNC contents of 0, 1, 3, 5, and 10 wt% were fabricated using solvent casting and subsequent heat treatment. The mechanical properties and water resistance of PVA/CNC films were significantly improved. The tensile strength and wet strength of the PVA/CNC film with a CNC content of 5 wt% (PVA/CNC 5%) were 184.5% and 136.0% higher than those of the untreated PVA, respectively. In addition, the water absorption and solubility of PVA/CNC 5% were 56.6% and 68.2% lower than those of the untreated PVA.

Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

  • Anawati, Anawati;Asoh, Hidetaka;Ono, Sachiko
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.120-124
    • /
    • 2016
  • The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in $0.5mol\;dm^{-3}\;Na_3PO_4$ solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase $Al_2Ca$. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of $Al_2Ca$ phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range $30-40{\mu}m$. The heat resistant phase of $Al_2Ca$ was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.

Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms

  • Kim, Mi Yeon;Kim, Changman;Moon, Jungheun;Heo, Jinhee;Jung, Sokhee P.;Kim, Jung Rae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.342-349
    • /
    • 2017
  • Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.

Controlled Release of Nerve Growth Factor from Sandwiched Poly(L-lactide-co-glycolide) Films for the Application in Neural Tissue Engineering

  • Gilson Khang;Jeon, Eun-Kyung;John M. Rhee;Lee, Ilwoo;Lee, Sang-Jin;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.334-340
    • /
    • 2003
  • In order to fabricate new sustained delivery device of nerve growth factor (NGF), we developed NGF-loaded biodegradable poly(L-lactide-co-glycolide) (PLGA, the mole ratio of lactide to glycolide 75:25, molecular weight: 83,000 and 43,000 g/mole, respectively) film by novel and simple sandwich solvent casting method for the possibility of the application of neural tissue engineering. PLGA was copolymerized by direct condensation reaction and the molecular weight was controlled by reaction time. Released behavior of NGF from NGF-loaded films was characterized by enzyme linked immunosorbent assay (ELISA) and degradation characteristics were observed by scanning electron microscopy (SEM) and gel permeation chromatography (GPC). The bioactivity of released NGF was identified using a rat pheochromocytoma (PC-12) cell based bioassay. The release of NGF from the NGF-loaded PLGA films was prolonged over 35 days with zero-order rate of 0.5-0.8 ng NGF/day without initial burst and could be controlled by the variations of molecular weight and NGF loading amount. After 7 days NGF released in phosphate buffered saline and PC-12 cell cultured on the NGF-loaded PLGA film for 3 days. The released NGF stimulated neurite sprouting in cultured PC-12 cells, that is to say, the remained NGF in the NGF/PLGA film at 37 $^{\circ}C$ for 7 days was still bioactive. This study suggested that NGF-loaded PLGA sandwich film is released the desired period in delivery system and useful neuronal growth culture as nerve contact guidance tube for the application of neural tissue engineering.