• Title/Summary/Keyword: Biodegradability improvement

Search Result 22, Processing Time 0.016 seconds

Effect of Pre-Treatment of Pig Slurry for Methane Production in Anaerobic Digestion Process (돼지분뇨 슬러리 전처리가 메탄 생성 효율에 미치는 영향)

  • Kwang, Hwa-Jeong;Ryu, Seung-Hyun;Namkung, Kyu-Cheol;Khan, Modabber Ahmed;Han, Duk-Woo;Kwag, Jung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.62-71
    • /
    • 2013
  • This study was carried out to develope a pre-treatment technology for anaerobic digestion. Breaking down large particles into smaller particles enhances the performance of anaerobic digestion by increasing the hydrolysis of particles. A degree of hydrolysis is the most important factor determining the overall efficiency of methane production. Three types of pre-treatment devices (blade-type crusher, ozonization system, cavitation system) were set up and operated to crush solids in pig slurry in order to enhance biodegradability. The effect of pre-treatment on decreasing granular size within pig slurry by three experimental devices were compared. The highest performance of granulization of pig slurry was attained in a combination of blade-type crusher and ozonization system. In batch experiment, there was an improvement of the methane potential by combined pretreatment with crusher and cavitation. In case of pre-treated slurry, biogas and methane production were 325.9 L and 59.7% respectively, while, in untreated slurry, the production were lower; 298.8 L and 55.7%, respectively. These results indicate that higher anaerobic digestion efficiency of pig slurry can be obtained through the pre-treatment.

Effect of the Pretreatment by Thermal Hydrolysis on Biochemical Methane Potential of Piggery Sludge (열가수분해 전처리가 양돈 슬러지의 메탄생산퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.524-531
    • /
    • 2012
  • The objective of this study was to investigate the organic solubilization (SCOD) and improvement of methane production for pig slurry by thermal hydrolysis. A sludge cake was pretreated by thermal hydrolysis at different reaction temperatures (200, 220, 250, $270^{\circ}C$). Ultimate methane potential (Bu) was determined at several substrate and inoculum (S/I) ratios (1:9, 3:7, 5:5, 7:3 in volume ratio) by biochemical methane potential (BMP) assay for 73 days. Pig slurry SCOD were obtained with 98.4~98.9% at the reaction temperature of $200{\sim}270^{\circ}C$. Theoretical methane potentials ($B_{th}$) of thermal hydrolysates at the reaction temperature of $200^{\circ}C$, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$ were 0.631, 0.634, 0.705, $0.748Nm^3\;kg^{-1}-VS_{added}$, respectively. $B_u$ of $200^{\circ}C$ thermal hydrolysate were decreased from $0.197Nm^3\;kg^{-1}-VS_{added}$ to $0.111Nm^3\;kg^{-1}-VS_{added}$ with the changes of S/I ratio from 1:9 to 7:3, and also $B_u$ of different thermal hydrolysates ($220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$) showed same tendency to $B_u$ of $200^{\circ}C$ thermal hydrolysate according to the changes of S/I ratio. Anaerobic biodegradability ($B_u/B_{th}$) of $200^{\circ}C$ thermal hydrolysate at different S/I ratios was decreased from 32.2% for S/I ratio of 1:9 to 17.6% for S/I ratio of 7:3. $B_u/B_{th}$ of $220^{\circ}C$, $250^{\circ}C$, and $270^{\circ}C$ thermal hydrolysat were decreased from 36.4% to 9.6%, from 31.3% to 0.8%, and from 26.6% to 0.8%, respectively, with the S/I ratio change, respectively. In this study, the rise of thermal reaction temperature caused the decrease of anaerobic digestibility and methane production while organic materials of pig slurry were more solubilized.