• Title/Summary/Keyword: Bioconcentration factor (BCF)

Search Result 39, Processing Time 0.025 seconds

Determination of Short-term Bioconcentration Factor on Carbofuran in Carassius auratus (goldfish) (Carassius auratus(goldfish)를 이용한 Carbofuran의 단기간 생물농축계수의 측정)

  • 민경진;배영규;차춘근;박천만;강회양
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.25-32
    • /
    • 1996
  • The Bioconcentration factor(BCF) is used as an important criterion in the risk assessment of environmental contaminants. Also it can be used as indicator of biomagnification of environmentally hazardous chemicals through food-chain as well as a tool for ranking the bioconcentration potential of the chemicals in the environment. This paper reports the measured BCF value on carbofuran in Carassius auratus(goldfish), under steady state, and examined corelation between the BCF value and the depuration rate constant. Carassius auratus(goldfish) was chosen as test organism and test periods were 1-day, 3-day and 5-day. Experimental concentrations were 0.05, 0.10 and 0.50 ppm. Carbofuran in fish tissue and in test water was extracted with n-hexane and acetonitril. GC-ECD was used to detect and quantitate carbofuran. The depuration rate of carbofuran from the whole body of goldfish is determined over the 24-h period after treatment. The obtained results were as follows: 1. It was possible to determine short term BCFs of carbofuran through relatively simple procedure in environmental concentrations. 2. $BCF_1$ of carbofuran in concentration of 0.05, 0.10 and 0.50 ppm were 1.66, 1.64 0.61, $BCF_3$ were 2.08, 2.14, 0.66 and $BCF_5$ were 2.21, 2.57, 0.86, respectively. 3. Carbofuran concentration in fish extract was increased as increasing test concentration and prolonging test period, but $BCF_s$ in concentration of 0.50 ppm was greately decreased. 4. Determined deputation rate constants of carbofuran in concentration of 0.05, 0.10, 0.50 ppm were 0.076, 0.082 and 0.089, respectively. 5. It is considered that great decrease of $BCF_s$ in concentration of 0.50 ppm is due to high water solubility and stability of carbofuran in testwater. 6. It is suggested that low BCF of carbofuran is due to its relatively high water solubility and depuration rate, compared to BPMC, carbaryl and chlorothalonil.

  • PDF

Determination of short-term bioconcentration Factor on BPMC, Carbaryl and Carbofuran in Brachydanio rerio and Xiphophorus hellieri (Brachydanio rerio와 Xiphophorus hellieri를 이용한 BPMC, Carbaryl 및 Carbofuran의 단기간 생물농축계수의 측정)

  • 민경진;전봉식;차춘근;김근배;조영주;송진욱
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 1998
  • Bioconcentration factors of some carbamates BPMC, carbaryl and carbofuran were determined. The tested fishes were zebrafish (Brachydanio rerio) and red sword tail (Xiphophorus hellieri). The fishes were exposed to 0.05 ppm, 0.01 ppm, 0.50 ppm, one- hundredth concentration of 96-hrs $LC_{50}$ and one-thousandth concentration of 96-hrs LCso and test periods were 3, 5 and 8 days. Obtained results are summerized as follows: In the case of BPMC and carbaryl, BPMC and carbaryl concentration in zebrafish extract and BCF s of BPMC, carbaryl were lower than those of red sword tail, and increased as increasing test concentration. In the case of same experimental concentrations, BPMC concentration in zebrafish extract and $BCF_s$ of BPMC were decreased as prolonging test periods. In the case of same experimental periods, carbaryl concentration in zebrafish extract and BCF s of carbaryl were decreased as increasing test concentration, especially dropped at 0.50 ppm. Carbofuran did not bioaccumulate in zebrafish for test periods, in the case of red sword tail, it was impossible to calculate on $BCF_s$ data because test concentration of one-hundredth and one-thousandth of 96hrs $LC_{50}$ was under the detecting limit on GC. Test concentration of 0.05 and 0.10 ppm were the same tendency with BPMC and carbaryl. Determined depuration rate conatant were highest on carbofuran, and followed by carbaryl, and BPMC. It is suggested that low BCF of carbofuran is due to its relatively high water solubility and depuration rate, compared to BPMC and carbaryl. Therefore, carbofuran had no little bioconcentration effect on the aquatic ecosystem.

  • PDF

Bioconcentration of Pirimiphos-methyl in Killifish (Oryzias latipes)

  • Seo, Jong-Su;Chang, Hee-Ra;Hamer, Mick;Kim, Kyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.453-461
    • /
    • 2009
  • Killifish (Oryzias latipes) were exposed to an organophosphate pesticide, pirimiphos-methyl, in a flow-through system to determine the bioconcentration factor (BCF) following GLP (Good Laboratory Practice). This study was conducted at two different concentrations (1 and $10\;{\mu}$g/L) of $^{14}C$-labeled pirimiphos-methyl for 28 days uptake and 14 days depuration according to the OECD 305 test guideline. The $BCF_{ss}$ for total radioactive residues in whole fish were 1,251 and 1,277 for low and high concentrations, respectively. The $BCF_k$ based on the uptake and depuration rate constants were 1,200 for both low and high concentrations. During the depuration phase, the accumulated test substance was rapidly depurated from fish. Greater than 95% of the residue at steady-state was depurated after 2 days. Although the measured BCF values were high, pirimiphos-methyl could be evaluated as a low risk from bioaccumulation by aquatic organisms due to the short depuration period and low amount of bound residue (1.5%). We suggest that in evaluating bioaccumulation, not only the BCF should be considered, but also depuration time and bound residue in aquatic organisms give an indication of the potential environmental risks.

Determination of Bioconcentration Factor in Some Pesticides (일부 농약의 생물농축계수의 측정)

  • 민경진;차춘근
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.2
    • /
    • pp.146-152
    • /
    • 1999
  • The present study was performed to investigate the bioconcentration of BPMC, chlorothalonil, dichlorvos and methidathion. The BCFs(bioconcentration factors) and depuration rate constants for four pesticides in zebrafish(brachydanio rerio) were measured under semi-static conditions(OECD guideline 305-B) in a concentration of one-hundredth of the 96 hours LC50 of each pesticide at the equilibrium condition. The results obtained are summarized as follows : The BCFs of BPMC, chlorothalonil, dichlorvos and methidathion were 1.44$\pm$0.09, 2.223$\pm$0.063, 0.81$\pm$0.08 and 5.53$\pm$0.13, respectively. Depuration rate constants of BPMC, chlorothalonil, dichlorvos and methidathion were 0.028, 0.015, 0.220 and 0.152, respectively. The concentrations of BPMC, dichlorovs and methidathion in zebrafish reached an equilibrium in 3 days, and the equilibrium of chlorothalonil was reached after 14 days. Depuration rate of dichlorvos was the fastest followed by methidathion, BPMC and chlorothalonil. The lower BCF of BPMC was due to its relatively high KOW, slow KDEP, and low SW and VP, compared to chlorothalonil and methidathion. The BCF of chlorothalonil was much lower than that excepted on the basis of high KOW, slow KDEP, SW and VP. The reason is that the experimental concentration for chlorothalonil is 1/100~1/1000 lower than that of BPMC, dichlorvos and methidathion. The BCF of dichlorvos was lower than that of other pesticides due to its very rapid KDEP, very high VP and SW, and very low KOW. The BCF of methidathion was higher than that of other pesticides due to its very low VP and SW. Therefore, these data suggest that physicochemical properties of pesticides may be important in the bioconcentration.

  • PDF

Difference in Species of Test Fish on the Determination of Short-term Bioconcentration Factor (단기간 생물농축계수의 측정에 있어서 실험어류의 종에 따른 차이)

  • 민경진;차춘근;전봉식;김근배
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • This study was performed to investigate the difference in species of test fish on the determination of short-term bioconcentration factor in zebrafish(Brachydanio rerio), red sword tail(Xiphophorus hellieri) and goldfish(Carassius auratus). Experimental concentrations of carbamates were 0.05 and 0.10 ppm and chlorothalonil were 0.005 and 0.01 ppm for 3 and 5 days, respectively. This paper reports the measured BCF value on pesticides in various species of test fish, under steady state, and examined correlation between the BCF value and depuration rate constant or LC$_{50}$ or lipid content. Carbamates and chlorothalonil concentration in fish extract and BCF of carbamate and chlorothalonil were increased as incresing test concentration. Carbamates concentration in fish extract and BCF of carbamate were decreased as incresing test period, but chlorothalonil concentration in fish extract and BCF of chlorothalonil were increased as prolonging test period. Determined pesticide concentration in fish extract and BCF were highest in red sword tail, and followed by goldfish, and zebrafish. Determined depuration rate constant were highest in zebrafish, and followed by goldfish, and red sword tail. 96hr-LC$_{50}$ were highest in red sword tail, and followed by zebrafish, and goldfish. Lipid compositions were highest in red sword tail, and followed by goldfish, and zebrafish. Therefore, it is suggested that the difference of BCF between each pesticide due to those of lipid composition of fish and deputation rate constant, while LC$_{50}$ have no effect on BCF.

  • PDF

Determination of the Bioconcentration Factor in Some Pesticides by Flow-through Fish Test (Flow-through fish test를 이용한 일부 농약의 생물농축예수의 측정)

  • 민경진;차춘근
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.37-42
    • /
    • 2001
  • Zebrafish(Brachdanio rerio)를 실험어류로 하여 methidathion 과 phosalone의 생물농축계수(bioconcentration factor : BCF)와 배설속도상수 (depuration rate constant) 및 LC$_{50}$를 측정하였다. Methidathion의 24, 48, 72, 96시간 LC$_{50}$는 각각 28.34, 35.98, 24.43, 22.03 mg/$\ell$로 측정되었다. Methidathion 0.22 mg/$\ell$(고농도)와 0.022 mg/$\ell$(저농도)에서 어류 체내에서의 농축정도는 두 농도군에서 각각 12시간 이후에 정류상태에 도달하여 72시간동안 거의 일정하였고, BCF값도 12시간에서 72시간 사이에 고농도와 저농도에서 8.72(n=4)와 11.25(n=4)로 조사되었다. 배설속도상수는 고농도와 저농도에서 6시간 이내에 모두 배설되어 배설속도상수를 구할 수 없었다. Phosalone의 24, 48, 72, 96시간 LC$_{50}$는 각각 3.76, 2.43, 1.86, 1.05 mg/$\ell$로 측정되었다. Zebrafish 체내에서의 농축정도와 BCF값은 고농도(0.01 mg/$\ell$)에서 12시간 이후에 정류상태에 도달하여 72시간동안 거의 일정하였고, BCF값은 12시간에서 72시간 사이에 48.88(n=4)로 측정되었다. 저농도(0.001 mg/$\ell$)에서는 실험 전기간동안 zebrafish 체내에서 phosalone이 검출되지 않아 BCF값을 산출할 수 없었다. Zebrafish 체내에서 phosalone(고농도)의 배설속도상수와 반감기를 구하기 위하여 6,12시간의 배설실험 결과 각각 0.17$hr^{-1}$과 4.01 시간이었다. Methidathion과 phosalone의 BCF값은 phosalone이 methidathion 보다 약 5배 정도 높게 나타났으며, 농약의 배설속도는 phosalone이 methidathion보다 빨랐다.

  • PDF

Detemination of Short-term Bioconcentration Factor on Dichlorvos, Methidathion and Phosalone in Brachydanio rerio and Xiphophorus hellieri (Brachydanio rerio와 Xiphophorus hellieri를 이용한 Dichlorvos, Methidathion 및 Phosalone의 단기간 생물농축계수의 측정)

  • 민경진;전봉식;차춘근;김근배;조영주
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • This study was performed to investigate the bioconcentration of dichlorvos, methidathion and phosalone in zebrafish (brachydanio rerio), red sword tail(Xiphophorus hellieri). The fishes were exposed to 0.05 ppm, 0.01 ppm, 0.50 ppm, one-hundredth concentration of 96-hrs LC$_{50}$ and one-thousandth concentration of 96-hrs LC$_{50}$ and test periods were 3, 5 and 8 days. The deputation rate of each pesticide from the whole body of fish was determined over the 24-hr period after treatment. Obtained results are summerized as follows: In the case of dichlorvos, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were increased as increasing test concentration. In the case of same experimental concentrations, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were decreased as proloning test periods, especially dropped after 5days. Dichlorvos concentration in red sword tail extract were increased as increasing test concentration, lyat BCF$_{s}$ in concentration of 0.05 ppm, 0.01 ppm and one-hundredth of 96-hrs LC$_{50}$ were decreased. Methidathion and phosalone concentration in zebrafish extract in zebrafish extract were increased as increasing test concentration, but there was little difference in BCF$_{s}$. In the case of same experimental concentrations, there were little differences in BCF$_{s}$ and concentration in zebrafish extract. In the case of red sword tail, it was impossible to calculate on BCF$_{s}$ data because test concentration was under the detecting limit on GC or test fish were die. Determined deputation rate conatant were highest on dichlorvos, and followed by methidathion, and phosalone. The results of determining depuration rate of these pesticides showed that the high BCF in fish might be due to the slow depuration rate in fish, it is thought to be responsible for vapor pressure, water solubility and partition coefficient. It is suggested that one-hundredth concentration of 96-hrs LC$_{50}$ will be proper test concentration because one-thousundth of LC$_{50}$ was under the detecting limit on GC. Dichlorvos, methidathion and phosalone, organophosphorous pesticides, were examined to their BCF$_{s}$ and depuration rates by means of fish test.

  • PDF

Determination of Bioconcentration Factor of Heavy Metal (loid)s in Rice Grown on Soils Vulnerable to Heavy Metal (loid)s Contamination

  • Lee, Seul;Kang, Dae-Won;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Lee, Jin-Ho;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to determine the bioconcentration factor (BCF) for heavy metal(loid)s to brown rice grown in paddy soils vulnerable to heavy metal(loid)s contamination, for the quantitative health risk assessment to the residents living nearby the metal contaminated regions. The samples were collected from 98 sites nationwide in the year 2015. The mean and range BCF values of As, Cd, Cu, Ni, Pb, and Zn in brown rice were 0.027 (0.001 ~ 0.224), 0.143 (0.001 ~ 2.434), 0.165 (0.039 ~ 0.819), 0.028 (0.005 ~ 0.187), 0.006 (0.001 ~ 0.048), and 0.355 (0.113 ~ 1.263), respectively, with Zn showing the highest. Even though the relationship between heavy metal(loid) contents in the vulnerable soils and metal contents in brown rice collected at the same fields was not significantly correlated, the relationship between log contents of heavy metal(loid)s in the vulnerable soils and BCF of brown rice wes significantly correlated with As, Cd, Cu, and Zn in rice. In conclusion, soil environmental risk assessment for crop uptake should consider the bioconcentration factor calculated using both the initial and vulnerable heavy metal(loid) contents in the required soil and the crop cultivated in the same fields.

Effect of Co-existence of Carbaryl and Chlorothalonil on the Short-term Bioconcentration Factor in Carassius auratus(goldfish) (Carbaryl과 Chlorothalonil의 공존이 Carassius auratus(goldfish)를 이용한 생물농축계수에 미치는 영향)

  • 민경진;김근배;차춘근;박천만;강회양
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.16-24
    • /
    • 1996
  • This study was performed to investigate the effect of co-existence of carbaryl and chlorothalonil on the short-term bioconcentration factor in Carassius auratus(goldfish). The fishes were exposed to the combined treatment of carbaryl and chlorothalonil(0.05 ppm+0.005 ppm, 0.05 ppm+0.010 ppm, 0.10 ppm+0.005 ppm) for 1, 3 and 5 days, respectively. Carbaryl and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate carbaryl and chlorothalonil. 1-day, 3-day and 5-day bioconcentration factors($BCF_1, BCF_3$ and $BCF_5$) of each pesticide were calculated from the quantitation results. The depuration rate of each pesticide from the whole body of fish was determined over the 72-h period after combined treatment. The results were as follows: $BCF_1$ values of carbaryl were 3.521, 3.802 and 3.587, respectively, when the concentration of carbaryl and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. BCF3 values of carbaryl were 4.825, 4.556 and 3.828, respectively, and $BCF_5$ values of carbaryl were 3.974, 3.921 and 4.186, respectively, under the conditions. While $BCF_1$ of chlorothalonil were 0.829, 0.829 and 1.540, respectively, under the same condition of pesticide concentrations $BCF_3$ of chlorothalonil were 2.040, 2.208 and 3.633, respectively, and $BCF_5$ of chlorothalonil were 6.222, 6.667 and 7.095, respectively, under the conditions. Depuration rate constants of carbaryl were 0.022, 0.022 and 0.152, respectively, when the concentration of carbaryl and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. While depuration rate constants of chlorothalonil were 0.004, 0.004 and 0.006, respectively, under the same condition of pesticide concentrations. It was observed that no significant differences of carbaryl and chlorothalonil concentration in fish extracts, test water and $BCF_s$ of carbaryl and chlorothalonil between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations was due to low concentrations, 0.005~0.1 ppm. Co-existence of carbaryl and chlorothalonil had no effect on excretion of each pesticide and depuration rate of chlorothalonil was investigated 1/8 slower than that of carbaryl in combined treatment. Therefore, it is considered that the persistence of chlorothalonil in fish body would be higher than that of carbaryl.

  • PDF

A Study on the Toxicity of Pb and Cu Compound in Carassius auratus(goldfish) (납 및 구리화합물이 Carassius auratus(goldfish)에 미치는 독성에 관한 연구)

  • 김남예;강회양
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.27-35
    • /
    • 1995
  • In order to investigate acute toxicity and bioconcentration of heavy metals for a freshwater fish, the fish used in this experiment was goldfish, Carassius auratus. Each ten goldfish was accommonidated in a water and was treated with different concentration of Pb and Cu compound. The 24 $hr-LC_{50}$ was obtained by plotting on the log-normal distribution graph. Furthermore, the combined effect of Pb and Cu was also investigated the fish was treated with Pb or Cu compound only, and Pb and Cu compound together, respectively. These results were summarized as follows: 1. The 24 $hr-LC_{50}'s$ of Pb and Cu were 7.48 mg/l and 0.666 mg/l, respectively. 2. When single or/and combined treatment with Pb(7.0 mg/l) or/and Cu(0.6 mg/l) to Carassius auratus for 24 hours were performed, there was significant difference between the single or/and the combined treatment in their bioaccumulated Cu concentrations. Cu concentrations in goldfish were higher in the combined treatment than in the single treatment. 3. When Carassius auratus was exposed to 0.748 mg/l (1/10 of 24 $hr-LC_{50}$) and 1.496 mg/l of Pb (1/5 of 24 $hr-LC_{50}$) for 7 days, the bioconcentration factors (BCF) were 79.14 and 100.11 for Pb, respectively. The BCF of Pb was obtained as a linearity according to the concentration and exposure time as follows log BCF=1.014 log $P\cdot T$+1.011 ($r^2$=0.9041) where, P: pollutant concentration(mg/l) T: exposure time(day) 4. When Carassius auratus was pxposed to 0.0666 mg/l (1/10 of 24 $hr-LC_{50}$) and 0.1332 mg/l of Cu (1/5 of 24 $hr-LC_{50}$) for 7 days, the bioconcentration factors (BCF) were 55.42 and 63.24 for Cu respectively. The BCF of Cu was obtained as a linearity according to the concentration and exposure time as follows log BCF=0.571 log $P\cdot T$+1.823 ($r^2$=0.8974) where, P: polutant concentration(mg/l) T: exposure time(day)

  • PDF