• Title/Summary/Keyword: Bioconcentration factor

Search Result 53, Processing Time 0.03 seconds

Fate of Di-2-ethylhexyl Phthalate in Aquatic Food Chain (Di-2-ethylhexyl phthalate의 수서생태계 먹이사슬을 통한 생물축적 및 거동예측)

  • Kim, Eun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.264-271
    • /
    • 2004
  • An aquatic food chain was constructed to provide information of bioaccumulation of DEHP as followed: phytoplankton(Scenedesmus subspicatus) ${\rightarrow}$ zooplankton(Daphnia magna) ${\rightarrow}$ fish(Oryzias latipes). After 10 days of exposure to DEHP, the fish and culture water were analyzed for residual concentration of DEHP and BAF(Bioaccumulation Factor) was determined. In addition, BCF(Bioconcentration Factor) was calculated in exposure tank in which fish were only exposed DEHP by culture water. These experiments provide the relative importance between BAF and BCF. In this study, BCF and BAF did not show any significant difference. Another work in this study was model construction and application to investigate the effect of food chain structure to BAF in higher organism (fish). The model constructed in this study considered the biological characteristics of DEHP such as metabolic parameters, as well as the chemical characteristics such as solubility. This model could be used in prediction of bioaccumulation level in dependent of various food chain structures, when the target organisms or chemicals would be changed.

Heavy Metal(loid) Levels in Paddy Soils and Brown Rice in Korea

  • Kunhikrishnan, Anitha;Go, Woo-Ri;Park, Jin-Hee;Kim, Kwon-Rae;Kim, Hyuck-Soo;Kim, Kye-Hoon;Kim, Won-Il;Cho, Nam-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.515-521
    • /
    • 2015
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to monitor the background levels of heavy metal(loid)s, arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in major rice growing soils and its accumulation in brown rice in Korea. The samples were collected from 82 sites nationwide in the year 2012. The mean and range values of As, Cd, Cu, Hg, Ni, Pb, and Zn in paddy soils were 4.41 (0.16-18.9), 0.25 (0.04-0.82), 13.24 (3.46-27.8), 0.047 (0.01-0.20), 13.60 (3.78-35.0), 21.31 (8.47-36.7), and 54.10 $(19.19-103.0)mg\;kg^{-1}$, respectively. This result indicated that the heavy metal(loid) levels in all sampled paddy soils are within the permissible limits of the Korean Soil Environment Conservation Act. The mean and range values of As, Cd, Cu, Hg, Ni, Pb, and Zn in brown rice were 0.146 (0.04-0.38), 0.024 (0.003-0.141), 4.27 (1.26-16.98), 0.0024 (0.001-0.008), 0.345 (0.04-2.77), 0.113 (0.04-0.197), and 22.64 $(14.1-35.1)mg\;kg^{-1}$, respectively. The mean and range BCF (bioconcentration factor) values of As, Cd, Cu, Hg, Ni, Pb, and Zn in brown rice were 0.101 (0.01-0.91), 0.121 (0.01-0.70), 0.399 (0.05-2.60), 0.061 (0.016-0.180), 0.033 (0.004-0.44), 0.005 (0.003-0.013), and 0.473 (0.19-1.07), respectively, with Zn showing the highest. The results show that the levels of all metal(loid)s in all sampled brown rice are generally within the acceptable limit for human consumption.

Quantiflcation of Human Exposure and Analysis of PCBs in Contaminated Some Site (특정지역에서 토양중 PCB의 분석과 인체노출량평가)

  • 이효민;박송자;김명수;윤은경;최시내;김선태;박종세
    • Toxicological Research
    • /
    • v.13 no.1_2
    • /
    • pp.49-54
    • /
    • 1997
  • PCBs are classified as B2 (Probable human carcinogen) based on the induction of hepatocellular carcinomas in rats and mice from IRIS (Integrated Risk Information System). About 20 years ago, PCBs were phased out for electrical use in Korea, but PCBs were continuously used in the other field. Lately, there has been increasing concern on possible effects of contaminated soil to the other environment and human health. The purpose of this study is to determine PCBs level in soil at some site and to assess the human exposure doses according to exposure routes for people living within sites which expected to be exposed to PCBs. Pollution level of PCBs on the site was monitored using gas liquid chromatography. To assess the transport of PCBs in soil to plant and to air, various transfer factors(diffusion coefficient, bioconcentration factor etc.) were considered in simple calculations. To calculate the residential exposure doses by routes, some equations were considered using assumption value, which define inhalation, ingestion (soil, plant) and derreal uptake pathway. Computated results will be used as risk assessment information for human health evaluation on contaminated soil.

  • PDF

Ecological modeling for toxic substances - I . Numerical simulation of transport and fate of Nonylphenol in Tokyo Bay- (유해화학물질의 생태계 모델링 - I. 동경만 Nonylphenol의 환경동태 해석 -)

  • Kim Dong-Myung;Shiraishi Hiroaki
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.827-835
    • /
    • 2005
  • A three-dimensional ecological model (EMT -3D) was applied to Nonylphenol in Tokyo Bay. EMT -3D was calibrated with data obtained in the study area. The simulated results of dissolved Nonylphenol were in good agreement with the observed values, with a correlation coefficient(R) of 0.7707 and a coefficient of determination (R2) of 0.5940. The results of sensitivity analysis showed that biodegradation rate and bioconcentration factor are most important factors for dissolved Nonylphenol and Nonylphenol in phytoplankton, respectively. In the case of Nonylphenol in particulate organic carbon, biodegradation rate and partition coefficient were important factors. Therefore, the parameters must be carefully considered in the modeling. The mass balance results showed that standing stocks of Nonylphenol in water, in particulate organic carbon and in phytoplankton are $8.60\times 10^5\;g,\;2.19\times 10^2\;g\;and\;3.78\times 10^0\;g$ respectively. With respect to the flux of dissolved Nonylphenol, biodegradation in the water column, effluent to the open sea and partition to particulate organic carbon were $6.02\times10^3\;g/day,\;6.02\times10^2\;g/day\;and\;1.02\times10^1\;g/day$, respectively.

Plant uptake potential of endosulfan from soil by carrot and spinach (다소비 채소작물인 시금치와 당근의 토양 중 엔도설판 흡수이행능)

  • Choi, Geun-Hyoung;Jeong, Dong-Kyu;Lim, Sung-Jin;Ro, Jin-Ho;Ryu, Song-Hee;Park, Byung-Jun;Moon, Byung-Cheol;Kim, Jin Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.339-342
    • /
    • 2017
  • Residual endosulfan in an agricultural environment has been reported, although endosulfan was listed to persistent organic pollutants and banned. To produce the safe crop from endosulfan residue risk, the plant uptake potential of endosulfan from soil to crop should be studied. In here, the plant uptake potentials of endosulfan in various crops were surveyed and ranged from 0.002-4.460. And the bioconcentration factors (BCF) of total endosulfan in carrot and spinach were calculated from the pot experiment. The BCFs in carrot and spinach were 0.285 and 0.040-0.047 respectively. Endosulfan sulfate was contributed to over 42.8% of the crop residue as a major contributor among the three endosulfan congeners in both of carrot and spinach.

The study on bioaccumulation of heavy metals in the cultured Pacific oyster, Crassostrea gigas, along the coast of Tongyeong, Korea (통영연안 해역의 양식 참굴 (Crassostrea gigas) 의 중금속 농축에 관한 연구)

  • Cho, Sang-Man;Kim, Yeong-Hwan;Jeong, Woo-Geon
    • The Korean Journal of Malacology
    • /
    • v.25 no.3
    • /
    • pp.213-222
    • /
    • 2009
  • In order to investigate contamination of heavy metal in seawater and cultured oyster, samples were collected November 2003 to July 2004 from 12 sites (13 sites for seawater) along the coast of Tongyeong, Korea. The mean concentrations of metal in oyster tissues were as follows: 0.09 (0.01-0.3) ${\mu}g/l$ for Cd, 0.47 (0.01-1.4) ${\mu}g/l$ for Cr, 0.59 (0.2-2.3) ${\mu}g/l$ for Ni, 1.02 (0.1-4.2) ${\mu}g/l$ for Pb and 0.48 (0.01-3.9) ${\mu}g/l$ for Hg in the seawater, whereas 2.45 (0-5.47) mg/kgDW for Cd, 3.63 (0.10-12.91) mg/kgDW for Cr, 3.2 (0.01-15.73) mg/kgDW for Ni, 3.51 (0.01-6.47) mg/kgDW for Pb and 0.39 (0.004-0.74) mg/kgDW for Hg, respectively. Most metal concentration values were below the permissible range for the related regulations. Mean bioconcentration factors (BCF) for each metal were as follows: 38,964 (1,771-207, 171) for Cd, 9,583 (1,231-80, 162) for Cr, 191 (3-20, 980) for Ni, 1,416 (245-5, 207) for Pb and 180 (5-716) for Hg, respectively. The BCF values from this study corresponded to the transitional phase from the pristine to the contaminated waters. Notably, Cd showed the highest BCF, which suggest that the Pacific oyster could be utilized as a useful biomarker for Cd contamination in sea water. The multidimensional scaling analysis suggested that the metal contaminants are mainly originated from combustion of fossil fuel and accumulated to oyster through food web.

  • PDF

Numerical Simulation for the Prediction of PAHs in Jinhae Bay using EMT-3D Model (EMT-3D 모델을 이용한 진해만 PAHs의 거동 예측 시뮬레이션)

  • Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The behavior prediction of PAHs in Jinhae Bay using a three-dimensional ecological model(EMT-3D) was examined. A three-dimensional ecological model(EMT-3D) was applied to the simulation of PAHs behaviors in Jinhae Bay of Korea. The computed results of simulation were in good agreement with the observed values. The result of sensitivity analysis showed that photolysis coefficient and extinction coefficient were important factors in the variation of dissolved PAHs, and POC partition coefficient was important factor in the variation of PAHs in particulate organic matter. In the case of PAHs in phytoplankton, bioconcentration factor of plankton was the most significant and the most effective in all. In simulations of 30%, 50% and 80% reduction in total loads of PAHs, the concentrations of dissolved PAHs were shown to be lower than 24 ng/L, 20 ng/L and 16 ng/L, respectively.

Selection of Plant Species for Phytoremediation of Heavy Metal (As and Cd) Contaminated Soil using Hydroponic Culture (수경재배에 의한 중금속 (As 및 Cd) 오염토양의 식물상 복원공법 적용 식물종 선별)

  • Bumjun Kim;Bumhan Bae;Younghun Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.28-38
    • /
    • 2024
  • Phytoremediation presents a low-carbon and eco-friendly solution for heavy metal-contaminated soils, which pose great health and environmental risks to humans and ecosystems. A hydroponic culture was used to quantitatively assess the phytoremediation potential of plant species to remediate As or Cd-contaminated soil in field application. This study examined the growth, uptake, and distribution of Cd in the roots and shoots of Phalaris arundinacea and Brassica juncea in hydroponic conditions with Cd concentrations ranging from 0 to 20 mg/L for 10 days. Additionally, Aster koraiensis and Pteris multifida were cultivated in hydroponic conditions containing As concentrations ranging from 0 to 40 mg/L for 10 days. The concentrations of Cd in the above-ground part and root tissues of P. arundinacea and B. juncea reached a maximum of 147.7 and 1926.7 mg/kg-D.W.(Dry Weight), and 351.6 and 11305.5 mg/kg-D.W., respectively. Bioconcentration factor (BCF) for P. arundinacea and B. juncea were 68.9 and 122.3, respectively. Both species exhibited a translocation factor (TF) of less than 0.1, indicating their eligibility for phytostabilization. Aster koraiensis exhibited significant As accumulation of 155.1 and 1306.7 mg/kg D.W. in the above-ground part and root, respectively. However, this accumulation resulted with substantial weight loss and the manifestation of toxic symptoms. P. multifida exhibited higher accumulation of As (345.1 mg/kg-D.W.) in the fronds than in the roots (255.4 mg/kg-D.W.), corresponding to BCF values of 18.6 and 7.6, respectively, and a TF greater than 1.2. A TF value greater than 1.0 indicates that P. multifida is a viable option for phytoextraction.

Identification of Transition Characteristics and Bio-concentration Factors of Heavy Metal (loid)s in the Selected Perennial Root Medicinal Plants

  • Kim, Won-Il;Noh, Hyun Myung;Hong, Chang-Oh;Kim, Da-Young;Kim, Kwon-Rae;Oh, Kyeong-Seok;Moon, Byeong-Churl;Kim, Ji-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.251-258
    • /
    • 2017
  • This study was conducted to identify transition characteristics of arsenic (As), cadmium (Cd), and lead (Pb) and to calculate bio-concentration factors (BCF) in the three perennial root medicinal plants, namely Codonopsis lanceolata (Deoduck), Platycodon grandiflorum (Balloon flower) and Panax ginseng (Korean ginseng) grown in major medicinal plant producing districts in Korea. Average BCF values ranged from 0.009~0.029 in As, 0.334~1.453 in Cd, and 0.021~0.023 in Pb in three perennial root medicinal plants. The BCF values increased in the order of ginseng (0.029) > deodeok (0.012) > balloon flower (0.009) for As, balloon flower (1.453) > deodeok (0.685) > ginseng (0.334) for Cd, and ginseng (0.023) > deodeok (0.022) > balloon flower (0.021) for Pb. The BCF values calculated in this study will be useful for predicting the uptake of heavy metal (loid)s. Further study on uptake and accumulation mechanism of toxic metal (loid)s by agricultural products is required to assess the human health risk associated with soil contamination.

Heavy Metal Accumulation in Edible Part of Eleven Crops Cultivated in Metal Contaminated Soils and Their Bio-concentration Factor (중금속 오염 토양에서 재배한 주요 작물별 가식부 중금속 축적 농도 및 생물농축계수)

  • Lim, Ga-Hee;Kim, Kye-Hoon;Seo, Byoung-Hwan;Kim, Kwon-Rae
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.260-267
    • /
    • 2015
  • BACKGROUND: The current study was conducted to examine the species specific accumulation of Cd and Pb in 11 crop species (Soybean, Sesame, Corn, Polished rice, Carrot, Potato, Garlic, Spring onion, Chinese leek, Red pepper, Eggplant), through cultivating them under the same condition with metal contaminated soils.METHODS AND RESULTS: Eleven crop species were cultivated in three different soils contaminated with Cd and Pb and harvested. Edible parts of each crop was pretreated and analyzed to determine Cd and Pb concentrations, and subsequently bioconcentration factors (BCFs) were calculated. In general, the crops of which seeds are used as food showed high concentrations of both Cd and Pb. For instance, Cd concentrations in crops cultivated in Soil A was in the order of soybean (0.432 mg kg-1) > sesame (0.385) > polished rice (0.176) > carrot (0.116) > corn (0.060) > red pepper > (0.047) > potato (0.044) > egg plant (0.025) > garlic (0.023) > spring onion (0.016) > Chinese leek (0.011). BCFs showed the same order.CONCLUSION: From this study, it can be conclude that seeds plants should not be cultivated in Cd and Pb contaminated soils to secure food safety from metal contaminated soils.