• Title/Summary/Keyword: Bioactivity

Search Result 520, Processing Time 0.031 seconds

Preparation of CaO-SiO2-B2O3 Glass-ceramics and Evaluation of Bioactivity Using in-vitro Test (CaO-SiO2-B2O3계 결정화 유리의 제조와 in-vitro법을 이용한 생체활성 평가)

  • Ryu, Hyun-Seung;Seo, Jun-Hyuk;Kim, Hwan;Hong, Kug-Sun;Kim, Deug-Joong;Lee, Jae-Hyup;Lee, Dong-Ho;Chang, Bong-Soon;Lee, Choon-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.490-497
    • /
    • 2002
  • Sintering property, mechanical property and bioactivity of $CaO-SiO_2-B_2O_3$ glass-ceramics were investigated. This glass-ceramics was sintered at 750-830${\circ}$ and showed nearly pore-free microstructure. The glass-ceramics consisted of three phases, i.e. monclinic-wollastonite, calcium borate and borosilicate glass matrix. The mechanical strength was higher than that of other bioactive ceramics, especially compressive strength(2813 MPa) and fracture toughness($3.12 MPa{\cdot}m^{1/2}$). Bioactivity of the glass-ceramics depends on amount of $CaB_2O_4$ and borosilicate glass matrix. It might be likely that more soluble $CaB_2O_4$ raises supersaturation of Ca ion in SBF solution and borosilicate glass forms Si-OH group that presents nucleation site of hydroxycarbonate apatite(HCA) layer. So, glassceramics of more $CaB_2O_4$ and borosilicate glass showed better bioactivity.

SURFACE CHARACTERISTICS AND BIOACTIVITY OF ANODICALLY OXIDIZED TITANIUM SURFACES (양극산화에 의한 티타늄 산화막의 표면 특성 및 생체 활성에 관한 연구)

  • Lee, Sang-Han;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.85-97
    • /
    • 2007
  • Statement of problem: Recently, anodic oxidation of cp-titanium is a popular method for treatment of titanium implant surfaces. It is a relatively easy process, and the thickness, structure, composition, and the microstructure of the oxide layer can be variably modified. Moreover the biological properties of the oxide layer can be controlled. Purpose: In this study, the roughness, microstructure, crystal structure of the variously treated groups (current, voltage, frequency, electrolyte, thermal treatment) were evaluated. And the specimens were soaked in simulated body fluid (SBF) to evaluate the effects of the surface characteristics and the oxide layers on the bioactivity of the specimens which were directly related to bone formation and integration. Materials and methods: Surface treatments consisted of either anodization or anodization followed thermal treatment. Specimens were divided into seven groups, depending on their anodizing treatment conditions: constant current mode (350V for group 2), constant voltage mode (155V for group 3), 60 Hz pulse series (230V for group 4, 300V for group 5), and 1000 Hz pulse series (400V for group 6, 460V for group 7). Non-treated native surfaces were used as controls (group 1). In addition, for the purpose of evaluating the effects of thermal treatment, each group was heat treated by elevating the temperature by $5^{\circ}C$ per minute until $600^{\circ}C$ for 1 hour, and then bench cured. Using scanning electron microscope (SEM), porous oxide layers were observed on treated surfaces. The crystal structures and phases of titania were identified by thin-film x-ray diffractmeter (TF-XRD). Atomic force microscope (AFM) was used for roughness measurement (Sa, Sq). To evaluate bioactivity of modified titanium surfaces, each group was soaked in SBF for 168 hours (1 week), and then changed surface characteristics were analyzed by SEM and TF-XRD. Results: On basis of our findings, we concluded the following results. 1. Most groups showed morphologically porous structures. Except group 2, all groups showed fine to coarse convex structures, and the groups with superior quantity of oxide products showed superior morphology. 2. As a result of combined anodization and thermal treatment, there were no effects on composition of crystalline structure. But, heat treatment influenced the quantity of formation of the oxide products (rutile / anatase). 3. Roughness decreased in the order of groups 7,5,2,3,6,4,1 and there was statistical difference between group 7 and the others (p<0.05), but group 7 did not show any bioactivity within a week. 4. In groups that implanted ions (Ca/P) on the oxide layer through current and voltage control, showed superior morphology, and oxide products, but did not express any bioactivity within a week. 5. In group 3, the oxide layer was uniformly organized with rutile, with almost no titanium peak. And there were abnormally more [101] orientations of rutile crystalline structure, and bonelike apatite formation could be seen around these crystalline structures. Conclusion: As a result of control of various factors in anodization (current, voltage, frequency, electrolytes, thermal treatment), the surface morphology, micro-porosity, the 2nd phase formation, crystalline structure, thickness of the oxide layer could be modified. And even more, the bioactivity of the specimens in vitro could be induced. Thus anodic oxidation can be considered as an excellent surface treatment method that will able to not only control the physical properties but enhance the biological characteristics of the oxide layer. Furthermore, it is recommended in near future animal research to prove these results.

Prediction of Parathyroid Hormone Signalling Potency Using SVMs

  • Yoo, Ahrim;Ko, Sunggeon;Lim, Sung-Kil;Lee, Weontae;Yang, Dae Ryook
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.547-556
    • /
    • 2009
  • Parathyroid hormone is the most important endocrine regulator of calcium concentration. Its N-terminal fragment (1-34) has sufficient activity for biological function. Recently, site-directed mutagenesis studies demonstrated that substitutions at several positions within shorter analogues (1-14) can enhance the bioactivity to greater than that of PTH (1-34). However, designing the optimal sequence combination is not simple due to complex combinatorial problems. In this study, support vector machines were introduced to predict the biological activity of modified PTH (1-14) analogues using mono-substituted experimental data and to analyze the key physicochemical properties at each position that correlated with bioactivity. This systematic approach can reduce the time and effort needed to obtain desirable molecules by bench experiments and provide useful information in the design of simpler activating molecules.

The Effect of Aloe on the Bioactivity of Ovariectomized Rats (난소를 절제한 흰쥐의 생리활성에 미치는 알로에의 영향)

  • 하배진
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.216-221
    • /
    • 1999
  • In order to observe the bioactivity of ovariectomized rats, ovariectomized group (Ovx), nonovariectomized group(Sham) and ovariectomized aloe-treat group(Ovx+Aloe) were made. Lipidperoxides of liver and kidney, serum AST.ALT, BUN, total cholesterol and HDL-cholesterol were investigated as follows. Lipidoxides of the liver and the kidney in Ovx group were 1.74 times and 1.38 times increased compared to Sham group respectively. But they were significantly decreased in Ovx+Aloe group compared to Ovx group. Serum AST and ALT in Ovx group were increased 1.49 times and 1.65 times respectively compared to Sham group respectively. But they were decreased compared to Ovx group. Serum total cholesterol in Ovx group was increased 1.48 times compared to Sham group. While it was increased 50% in Ovx+Aloe group. Serum HDL-cholesterol in Ovx group was decreasd 23$\%$ compared to Sham group. While it was increasd 58% in Ovx+Aloe group compared to Ovx group. Serum BUN in Ovx group was increased slightly compared to Sham group. In Ovx+Aloe serum BUN had no change compared to Ovx group.

  • PDF

Preparation and Availability Analysis of Collagen Peptides Obtained in Fish Scale (어류비늘에서 추출한 콜라겐펩타이드의 제조 및 유효성 분석)

  • Lee, Mi-Jin;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.457-466
    • /
    • 2009
  • This study is manufacturing method and analysis of feasibility about collagen peptide from fish scale. This is processed by enzyme hydrolysis, isolating and refining etc. The results of analysis of nutritional composition showed protein content of collagen peptide. In the analysis of constitutive amino acids, the ratio of contents of hydroxyproline and glycine, the characteristics of collagen peptides appeared similar and the contents of glutamic acid and aspartic acid which are involved in protein metabolism. As a result of measurement of total polyphenol content and total flavonoid, it showed that collagen peptide had more contents generally, and the effect of bioactivity of pig-skin collagen peptide appeared higher although different kinds of scale collagen peptide showed a little DPPH radical scavenging ability, total antioxidant capacity by ABTS, ACE inhibitory.

Preparation of Self-standing Mesoporous Bioactive Glass/biodegradable Polymer Composite thin Films using Water Casting Method (수면전개법을 이용한 메조다공성 생체활성유리-생분해성 고분자 복합체 자립박막의 제조)

  • Yun, Hui-Suk;Yoon, Jun-Jin;Park, Eui-Kyun;Kim, Seung-Eon;Hyun, Yong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.631-637
    • /
    • 2008
  • Self-standing mesoporous bioactive glass/poly($\varepsilon$-caprolactone) composite thin films with good molding capability, bioactivity, and biocompatibility in vitro, which may find potential applications in tissue engineering and drug storage, were prepared using a combination of the sol-gel, polymer templating, and water casting method. The thickness of self-standing films was affected by the difference of dielectric constant between distilled water and organic solvent.