• Title/Summary/Keyword: Bio-system

Search Result 3,451, Processing Time 0.029 seconds

Recent research trends on Bio-MEMS (Bio-MEMS분야의 최근 연구동향)

  • Park, Se-Kwang;Yang, Joo-Ran
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.259-270
    • /
    • 2010
  • MEMS(micro electro mechanical systems) is a technology for the manufacture hyperfine structure, as a micro-sensor and a driving device, by a variety of materials such as silicon and polymer. Many study for utilizing the MEMS applications have been performed in variety of fields, such as light devices, high frequency equipments, bio-technology, energy applications and other applications. Especially, the field of Bio-MEMS related with bio-technology is very attractive, because it have the potential technology for the miniaturization of the medical diagnosis system. Bio-MEMS, the compound word formed from the words 'Bio-technology' and 'MEMS', is hyperfine devices to analyze biological signals in vitro or in vivo. It is extending the range of its application area, by combination with nano-technology(NT), Information Technology(IT). The LOC(lab-on-a-chip) in Bio-MEMS, the comprehensive measurement system combined with Micro fluidic systems, bio-sensors and bio-materials, is the representative technology for the miniaturization of the medical diagnosis system. Therefore, many researchers around the world are performing research on this area. In this paper, the application, development and market trends of Bio-MEMS are investigated.

Effects of Bio-floc System on Growth and Environmental Improvement in the Chinese White Shrimp Fenneropenaeus chinensis (바이오플락(Bio-floc) 시스템이 사육 환경개선 및 대하(Fenneropenaeus chinensis)의 성장에 미치는 영향)

  • Kim, Min-Su;Min, EunYoung;Koo, Ja-Keun;Kang, Ju-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.688-695
    • /
    • 2015
  • The objective of this study was to investigate the effects of bio-floc system that is composed of effective microorganisms (EM) on the microbial composition and water qualities in rearing water and the growth of Chinese white shrimp, Fenneropenaeus chinensis. To investigate the microbial composition according to the bio-floc levels, the study was conducted at 100 and 150% of bio-floc after 5 and 10 days in bio-floc system. The results showed that total bacteria count (TBC) and the counts of Latobacillus sp., Bacillus sp. and Rhodobactor sp., were significantly decreased after 5 days in bio-floc system. To assess the growth of F. chinensis according to the concentrations of bio-floc, the study was conducted at the bio-floc concentrations; 0 (control), 60, 80, 100, 120 and 140% of the prepared bio-floc for 90 days. The growth factors such as daily length and weight gain were considerably increased at the concentrations of bio-floc 100, 120, and 140% after 90 days. As water quality indicators, the values of total-N, NH4+-N and PO4--P were analyzed, and they were significantly decreased at 120 and 140% of bio-floc, compared to the control. The results demonstrated that combination of EM showed the synergic effect on removing N and P.

Design and Implementation of a Multi-Intelligent Agent based Platform for a Bio-Inspired System (생태계 모방 시스템을 위한 멀티 지능형 에이전트 기반의 플랫폼 설계 및 구현)

  • Moon, Joo-Sun;Nang, Jong-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.545-549
    • /
    • 2007
  • The Bio-Inspired System focuses on the creation of an effective system model for massive network applications and is being widely developed. However, the system has a problem-difficulty implementing three features in the system, which includes scalability, adaptability and survivability. To solve this problem, we designed an Ecogent as a multiple intelligence agent, and a Bio-platform to address the three features of scalability, adaptability and survivability. The Bio-Inspired System Platform consists of an ERS (Ecogent Runtime Services) Platform and a Bio-Platform. The ERS platform serves the basic functions of mobile agents, such as Registration, Life Cycle, Migration, Communication, Location and Fault Tolerance. The Bio-Platform includes the functions of Evolution Control and Stigmergy Control to address evolution and adaptation.

A Study on the Microbial Contaminant Transport and Control Method According to Government Building Bio- Attack (청사 건물의 Bio-Attack에 따른 미생물 오염원 확산 및 제어방안에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.252-259
    • /
    • 2008
  • The purpose of this study is to estimate the movement of microbial contaminant caused by bio-attack using bio-agent such as bacillus anthracis for preventing contaminant diffusion. multizone simulation was carried out in the case of three types of bio-attack scenario in the government building. Simulation results show that severe contaminant diffusion is brought about in all cases of bio-attack scenario in one hour, though pollution boundaries have different mode according to bio-attack scenarios. Simulation results also show that immune building technology such as filter and UVGI technology gives us powerful alternatives to meet the emergent situation caused by unexpected bio-attack.

Macroscopic Behavior and Atomization Characteristics of Bio-diesel Fuels (바이오 디젤 연료의 분무 거동 및 미립화 특성)

  • Suh, Hyun-Kyu;Park, Sung-Wook;Kwon, Sang-Il;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.23-29
    • /
    • 2004
  • This work was conducted to figure out the atomization characteristics of three types of bio-diesel fuels using a common-rail injection system. The process of spray development was visualized by using a spray visualization system composed of a Nd:YAG laser and an ICCD camera, The spray tip penetrations were analyzed based on the frozen images from the spray visualization system. On the other hand, the microscopic atomization characteristics such as the distributions of SMD and axial mean velocity were measured by using a phase Doppler particle analyzer system, It is revealed that the sprays of the bio-diesel fuels have larger SMD than that of diesel fuel mainly due to high viscosity of bio-diesel. Different characteristics of bio-diesel fuels were also measured in spray tip penetrations according to the fuels and mixing ration.

Implementation of Implantable Bluetooth Bio-telemetry System for Transmitting Acoustic Signals in the Body with Wireless Recharging Function (무선 충전 가능한 블루투스 방식의 체내 음향신호 전송용 이식형 바이오 텔레메트리 시스템 구현)

  • Lee, Sang-June;Kim, Myoung Nam;Lee, Jyung Hyun;Lim, Hyung-Gyu;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.652-662
    • /
    • 2015
  • It is necessary to develop small, implantable bio-telemetry systems which can measure and transmit patients' bio-signals from internal body to external receiver. When measuring bio-signals, like electrical bio-signals, acoustic bio-signal measurement has also a big clinical usefulness. But, sound signal has larger frequency bandwidth than any other bio-signals. When considering these issues, a wireless telemetry system which has rapid data transmission rate proportional to wide frequency bandwidth is necessary to be developed. The bluetooth module is used to overcome the data rate limitation caused by the large frequency bandwidth. In this paper, a novel multimedia bluetooth biotelemetry system was developed which consists of transmitter module located in the body and receiver device located outside of the body. The transmitter consists of microphone, bluetooth, and wireless charging device. And the receiver consists of bluetooth and codec system. The sound inside the skin is captured by microphone and sent to receiver by bluetooth while charging. The wireless charging system constantly supplies the electric power to the system. To verify the performance of the developed system, an in vitro experiment has been performed. The results show that the proposed biotelemetry system has ability to acquire the sound signals under the skin.

Implementation of Network System for Bio-physical signal Communication

  • Kim, Jeong Lae;Kang, Jeong Jin;Rothwell, Edward J.
    • International Journal of Advanced Culture Technology
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • This network system for home care realized communication by the bio-physical signal, to convey physical rhythm. Four function of displacement had point of a Vision, Somatosensory, Vestibular and CNS. Bio-physical signal was decided to design a maximum points and minimum points with 0.01unit in reference level. Bio-physical signal was checked to compound physical condition of body posture for sensory organ. There detected a measurement of Vision, Somatosensory, Vestibular, CNS and BMI. The service of network system of home can be used to support a health care system for health assistant in health care center. It will expect to manage a physical parameter for network communication.

  • PDF

BioCC: An Openfree Hypertext Bio Community Cluster for Biology

  • Gong Sung-Sam;Kim Tae-Hyung;Oh Jung-Su;Kwon Je-Keun;Cho Su-An;Bolser Dan;Bhak Jong
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.125-128
    • /
    • 2006
  • We present an openfree hypertext (also known as wiki) web cluster called BioCC. BioCC is a novel wiki farm that lets researchers create hundreds of biological web sites. The web sites form an organic information network. The contents of all the sites on the BioCC wiki farm are modifiable by anonymous as well as registered users. This enables biologists with diverse backgrounds to form their own Internet bio-communities. Each community can have custom-made layouts for information, discussion, and knowledge exchange. BioCC aims to form an ever-expanding network of openfree biological knowledge databases used and maintained by biological experts, students, and general users. The philosophy behind BioCC is that the formation of biological knowledge is best achieved by open-minded individuals freely exchanging information. In the near future, the amount of genomic information will have flooded society. BioGG can be an effective and quickly updated knowledge database system. BioCC uses an opensource wiki system called Mediawiki. However, for easier editing, a modified version of Mediawiki, called Biowiki, has been applied. Unlike Mediawiki, Biowiki uses a WYSIWYG (What You See Is What You Get) text editor. BioCC is under a share-alike license called BioLicense (http://biolicense.org). The BioCC top level site is found at http://bio.cc/