• Title/Summary/Keyword: Bio-sensor System

Search Result 293, Processing Time 0.029 seconds

Development of a wireless telemetry system based on MICS standard (MICS 표준에 기반한 무선 텔레메트리 시스템 개발)

  • Lee, Seung-Ha;Park, Il-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2009
  • It is said that the desirable bio-signal measurement and stimulation system should be an implantable type if the several problems such as biocompatibility, electrical safety, and so on are overcome. In addition to the biocompatibility issue, a robust RF communication and a stable electrical power source for the implantable bio-signal measurement and stimulation system are very important matters. In this paper, a wireless telemetry system which adopts the FCC's approved MICS (medical implant communication service) protocol and a wireless power transmission has been proposed. The proposed system composed of a base station (BS) and an implantable medical device (IMD) has the advantages that the interference with other RF devices can be reduced by the use of the specially assigned MICS frequency band of 402.MHz to 405 MHz. Also, the proposed system includes various functions of a multi-channel bio-signal acquisition and an electric stimulation. Since the electrical power for the IMD can be provided by the inductive link between PCB patterned coils, the IMD needs no battery so that the IMD can be smaller size and much less dangerous than the active type IMD which includes the internal battery. Finally, the validity as a wireless telemetry system has been demonstrated through the experiments by using the implemented BS and IMD.

A Node Scheduling Control Scheme in Wireless Sensor Networks Inspired by Inter-Cell Signaling (생체 내 셀 간 신호 전달 체계를 모사한 지역적 협력 및 시스템 요구 성능 보장을 위한 무선 센서망의 노드 스케쥴링 제어)

  • Byun, Heejung;Son, Sugook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.143-150
    • /
    • 2014
  • In this paper, we propose an energy efficient and delay guaranteed node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique. With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

Development of Livestock Monitoring Device based on Biosensors for Preventing Livestock Diseases

  • Park, Myeong-Chul;Jung, Hyon-Chel;Ha, Ok-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.91-98
    • /
    • 2016
  • Outbreaks of highly contagious livestock diseases can cause direct and indirect economic impacts such as lower productivity of cattle farms, fall in tourism in damaged areas and countries, and decline in exports. They also incur tremendous social costs associated with disease elimination and restoration work. Thus, it is essential to prevent livestock diseases through monitoring and prediction efforts. Currently, however, it is still difficult to provide accurate predictive information regarding occurrences of livestock diseases, because existing cattle health monitoring or forecasting systems are only limited to monitor environmental conditions of livestock barns and check activities of cattle by using a pedometer or thermal image. In this paper, we present a biosensor-based cattle health monitoring system capable of collecting bio-signals of farm animals in an effective way. For the presented monitoring system, we design an integrated monitoring device consisting of a sensing module to measure bio-signals of cattle such as the heartbeat, the breath rate and the momentum, as well as a Zigbee module designed to transmit the biometric data based on Wireless Sensor Network (WSN). We verify the validity of the monitoring system by the comparison of the correlations of designed device with a commercial ECG equipment through analyzing the R-peak of measured signals.

Obstacle Recognition and Avoidance of the Bio-mimetic Underwater Robot using IR and Compass Senso (IR 센서 및 Compass 센서를 이용한 생체 모방형 수중 로봇의 장애물 인식 및 회피)

  • Lee, Dong-Hyuk;Kim, Hyun-Woo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.928-933
    • /
    • 2012
  • In this paper, the IR and compass sensors for the underwater system were used. The walls of the water tank have been recognized and avoided treating the walls as obstacles by the bio-mimetic underwater robot. This paper is consists of two parts: 1.The hardware part for the IR and compass sensors and 2.The software part for obstacle avoidance algorithm while the bio-mimetic robot is swimming with the obstacle recognition. Firstly, the hardware part controls through the RS-485 communications between a microcontroller and the bio-mimetic underwater robot. The software part is simulated for obstacle recognition and collision avoidance based upon the data from IR and compass sensors. Actually, the bio-mimetic underwater robot recognizes where is the obstacle as well as where is the bio-mimetic robot itself while it is moving in the water. While the underwater robot is moving at a constant speed recognizing the wall of water tank as an obstacle, an obstacle avoidance algorithm is applied for the wall following swimming based upon the IR and compass sensor data. As the results of this research, it is concluded that the bio-mimetic underwater robot can follow the wall of the water tank efficiently, while it is avoiding collision to the wall.

Development of Smart Healthcare Scheduling Monitoring System for Elderly Health Care

  • Cho, Sooyong;Lee, Sang Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.51-59
    • /
    • 2018
  • Health care has attracted a lot of attention, recently due to an increase in life expectancy and interest in health. Various biometric data of the user are collected by using the air pressure sensor, gyro sensor, acceleration sensor, and heart rate sensor to perform the Smart Health Care Activity Tracker function. Basically, smartphone application is made and tested for biometric data collection, but the Arduino platform and bio-signal measurement sensor are used to confirm the accuracy of the measured value of the smartphone. Use the Google Maps API to set user goals and provide guidance on the location of the user and the points the user wants. Also, the basic configuration of the main UI is composed of the screen of the camera, and it is possible for the user to confirm the forward while using the application, so that accident prevention is possible.

Structural Heal th Monitoring Based On Carbon Nanotube Composite Sensors (나노 센서를 이용한 구조물 건전성 감시 기법)

  • Kang, In-Pil;Lee, Jong-Won;Choi, Yeon-Sun;Schu1z Mark J.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.613-619
    • /
    • 2006
  • This paper introduces a new structural health monitoring using a nano sensor. The sensor is made of nano smart composite material based on carbon nanotubes. The nano sensor is fabricated as a thin and narrow polymer film sensor that is bonded or deposited onto a structure. The electrochemical impedance and dynamic strain response of the neuron change due to deterioration of the structure where the sensor is located. A network of the long nano sensorcan form a structural neural system to provide large area coverage and an assurance of the operational health of a structure without the need for actuators and complex wave propagation analyses that are used with other methods.

  • PDF

AUTOMATIC LEVELING CONTROL SYSTEM FOR COMBINE

  • Lee, S. S.;K. S. Oh;H. Hwang;Park, D. Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.684-689
    • /
    • 2000
  • In harvesting rice and barley using combine, the inclination of the body caused by the irregular surface condition of the field and the soil sinking from the unbalanced weight during the grain collection used to make harvesting operation difficult and even impossible. To overcome such a problem, automatic leveling control system for a combine has been developed and tested. The system was composed of the sensor for measuring left and right inclination of the combine chassis and the hydraulic control system. The adaptability of the control system was investigated by analyzing system response in time domain. And the limit angle of the leveling control was set up to be +/- 7$^{\circ}$. The proposed control and hydraulic power system was implemented to the prototype combine. The prototype combine was designed and built as a separable structure with chassis and track. This paper shows results of the leveling performance tested in the laboratory and the grain field.

  • PDF

Bio-Signal Detection Monitoring System Using ZigBee and Wireless Network (ZigBee와 무선 네트워크를 이용한 생체신호 검출 모니터링 시스템)

  • Kim, Kuk-Se;Bang, Sun-Kwang;Lee, Jeong-Gi;Ahn, Seong-Soo;Lee, Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.477-481
    • /
    • 2007
  • The emergency patient who occurs from the place where it is various the control which is quick must come to accomplish in Ubiquitous environment. In the body of the patient or the old person the organism signal sensor about under attaching condition of the patient at real-time about under the monitor ring about under disposing the control which is quick against the emergency patient does to become accomplished at the case real-time when the above will get in the body of the patient or the old person. Using ZigBee (802.15.4) system base on Shor wireless communication protocol because of complement wireless of hospital. This system use ZigBee (802.15.4) system to get for electrocardiogram, blood pressure and pulse bio-sensors. This paper constructs Bio-Sensor communication monitoring system and transmission rate and the delay which it follows possibility and node occurrence rate of wireless sensor network construction hour transmission session it leads and it verifies the effectiveness.

  • PDF

Disaster Emergency Management Systems using Bio-AdHoc Sensor Networks (센서 탑재 바이오 애드 혹 네트워크를 이용한 재난 관리용 시스템)

  • Lee, Dong-Eun;Lee, Goo-Yeon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.183-189
    • /
    • 2006
  • Ad hoc network does not need any preexisting network infrastructure, and it has been developed as temporal networks in the various fields. Infostation is an efficient system to transfer informations which are not sensitive to delay. In this paper, we propose a disaster emergency management system using sensors attached to animals, that is combined with infostation system. We also analyze the performance of the proposed system by simulation. From the performance analysis results, we expect that the proposed system will be very useful to early detect big forest fires which occur frequently in Korea mountain areas.

  • PDF