• 제목/요약/키워드: Bio-retention

검색결과 140건 처리시간 0.021초

단기 강우 시 소규모유역에서 생태저류지의 유출 저감효과 분석 (An Analysis of the Outflow reduction effect of Bio-retention in Small watershed during Short-term rainfall)

  • 천종현;김재문;장영수;신현석
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.434-442
    • /
    • 2019
  • 도시 내 빈번히 발생하는 홍수 피해를 해결하기 위한 대응 방안으로 자연상태의 수문순환 체계를 회복하기 위한 저영향개발(Low Impact Development, LID) 기법이 대두되고 있다. LID 요소기술 중 하나인 생태저류지는 유역에서 발생하는 유출수를 저류 및 침투하여 우수 유출수 및 비점오염물질 저감효과를 갖는 시설로 다양한 연구가 진행되고 있으나, 유출저감효과에 대한 분석은 미흡한 실정이다. 따라서 본 연구에서는 수문 해석이 가능한 K-LIDM을 이용하여 소규모유역에서 생태저류지의 유출 저감효과를 분석하였다. 시나리오를 구성함에 있어 생태저류지의 저류용량을 증가시키거나 유역과 생태저류지를 분할하였고 확률강우량을 활용하여 단기강우를 모의하였다. 분석결과 저류용량 증가에 따라 20%, 분산형 시스템에서 5~15% 이상의 유출 저감효과를 나타냈으며 향후 생태저류지의 저류깊이, 지반의 침투능 및 유출부의 직경과 높이 등 다양한 시나리오에 대한 연구가 수행된다면 생태저류지의 물순환 효율성에 관하여 보다 정량적인 분석이 가능할 것으로 기대된다.

생태저류지 LID 시설의 강우유출수 처리비 산정 (Estimation of Stormwater Interception Rate for Bio-retention LID Facility)

  • 최정현;이옥정;김상단
    • 한국물환경학회지
    • /
    • 제33권5호
    • /
    • pp.563-571
    • /
    • 2017
  • Because of the rapid progress of urbanization in recent decades, the proportion of impervious areas in cities has increased. As a result, hydrological properties of urban streams have changed and non-point pollution sources have increased, that have had considerable influence on human life and ecosystems. To manage these situations, application of non-point pollution reduction facilities and LID facilities are expanding recently. In this study, it is investigated if rainfall interception rate used in design of non-point pollution reduction facilities can be applied to design of LID facilities. For this purpose, EPA SWMM is constructed for part of Noksan National Industrial Complex area wherein long-term observed storm water data can be obtained and storm water interception rates for various design capacities of a bio-retention LID facility reservoirs are estimated. While sensitivity of storm water interception rate according to design specifications of bio-retention facility is not large, sensitivity of storm water interception rate according to regional rainfall characteristics is relatively large. As a result of comparing present rainfall interception rate estimation method with the one proposed in this study, the present method is highly likely to overestimate performance of the bio-retention facility. Finally, a new storm water interception rate formula for bio-retention LID facility is proposed.

식생형시설의 직접유출량 저감 효과분석 및 적용 방법 타당성 검토 (Direct Runoff Reduction Analysis and Application Feasibility Evaluation of Vegetation-type Facilities)

  • 이한용;우원희;박윤식
    • 농촌계획
    • /
    • 제30권2호
    • /
    • pp.69-77
    • /
    • 2024
  • As impervious area increases due to urbanization, rainfall on the impervious area does not infiltrate into the ground, and stormwater drains quickly. Low impact development (LID) practices have been suggested as alternatives to infiltrate and store water in soil layers. The practices in South Korea is applied to urban development projects, urban renewal projects, urban regeneration projects, etc., it is required to perform literature research, watershed survey, soil quality, etc. for the LID practices implementation. Prior to the LID implementation at fields, there is a need to simulate its' effect on watershed hydrology, and Storm Water Management Model (SWMM) provides an opportunity to simulate LID practices. The LIDs applied in South Korea are infiltration-based practices, vegetation-based practices, rainwater-harvesting practices, etc. Vegetation-based practices includes bio-retention cell and rain garden, bio-retention cells are mostly employed in the model, adjusting the model parameters to simulate various practices. The bio-retention cell requires inputs regarding surface layer, soil layer, and drain layer, but the inputs for the drain layer are applied without sufficient examination, while the model parameters or inputs are somewhat influential to the practice effects. Thus, the approach to simulate vegetation-based LID practices in SWMM uses was explored and suggested for better LID simulation in South Korea.

Retention of BioAggregate and MTA as coronal plugs after intracanal medication for regenerative endodontic procedures: an ex vivo study

  • Amin, Suzan Abdul Wanees;Gawdat, Shaimaa Ismail
    • Restorative Dentistry and Endodontics
    • /
    • 제43권3호
    • /
    • pp.18.1-18.12
    • /
    • 2018
  • Objectives: This study compared the retention of BioAggregate (BA; Innovative BioCeramix) and mineral trioxide aggregate (MTA; Angelus) as coronal plugs after applying different intracanal medications (ICMs) used in regenerative endodontic. Materials and Methods: One-hundred human maxillary central incisors were used. The canals were enlarged to a diameter of 1.7 mm. Specimens were divided into 5 groups (n = 20) according to the ICM used: calcium hydroxide (CH), 2% chlorhexidine (CHX), triple-antibiotic paste (TAP), double-antibiotic paste (DAP), and no ICM (control; CON). After 3 weeks of application, ICMs were removed and BA or MTA were placed as the plug material (n = 10). The push-out bond strength and the mode of failure were assessed. The data were analyzed using 2-way analysis of variance, the Tukey's test, and the ${\chi}^2$ test; p values < 0.05 indicated statistical significance. Results: The type of ICM and the type of plug material significantly affected bond strength (p < 0.01). Regardless of the type of ICM, BA showed a lower bond strength than MTA (p < 0.05). For MTA, CH showed a higher bond strength than CON, TAP and DAP; CHX showed a higher bond strength than DAP (p < 0.01). For BA, CH showed a higher bond strength than DAP (p < 0.05). The mode of failure was predominantly cohesive for BA (p < 0.05). Conclusions: MTA may show better retention than BA. The mode of bond failure with BA can be predominantly cohesive. BA retention may be less affected by ICM type than MTA retention.

자연상태 유황곡선 보전을 위한 생태저류지 용량결정방법 (Size Determination Method of Bio-Retention Cells for Mimicking Natural Flow Duration Curves)

  • 이옥정;장수형;김홍태;김상단
    • 한국습지학회지
    • /
    • 제18권4호
    • /
    • pp.424-431
    • /
    • 2016
  • 생태저류지와 같은 LID 시설은 강우유출수를 관리하기 위하여 적용된다. LID 개념이 강우유출수 관리 계획의 중요한 부분이 되면서, LID 시설의 수문학적 성능과 LID 시설이 배수분구의 수문환경에 미치는 영향에 대한 명확한 이해가 필요한 상황이다. 본 연구는 설계 전략으로서 유황곡선의 활용에 관한 사항을 다루고 있다. 많은 LID 시설들과 마찬가지로 생태저류지는 자연 상태의 수문현상을 재현하고자 설치된다. 본 연구에서는 유황곡선 기준을 만족하는 생태저류지의 크기를 결정하려는 시도가 수행된다. 연구 결과, 현재 비점오염저감시설의 용량기준인 "5mm * 처리대상구역의면적"은 불투수율 20-30%인 지역에 유효함을 살펴볼 수 있다. LID 시설이 전형적으로 설치되는 100% 불투수 지역의 경우 자연상태 유황곡선의 재현을 기준으로 보면 47mm 정도의 유출고를 차집할 수 있는 용량이 요구되며, 이는 처리대상구역 면적의 11% 정도가 생태저류지로 활용되어야함을 의미한다. 하지만, 시설의 용량과 시설 면적의 기준은현실적으로 구현 가능한 조건에서 설정되어야 할 것이며, 또한 처리대상구역의 개별적인 수문학적 특성을 반영하여 결정되어야 할 것이다.

도시 물 순환 개선을 위한 생태저류지의 최적설계용량 결정 (Determination of Optimum Design Capacity of Bio-retention for Improvement of Urban Water Cycle)

  • 이옥정;최정현;이정훈;김상단
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.745-753
    • /
    • 2017
  • 본 연구에서는 도시 개발에 따라 왜곡된 도시 물 순환을 LID 시설을 통하여 자연적인 물 순환으로 되돌리고자 하는 설계전략이 제안된다. 이는 도시 개발 전과 후의 유황곡선이 동일하게 유지되는 최적의 LID 시설 설계용량을 결정함으로서 구현된다. 부산 녹산 국가산업단지의 일부지역이 연구대상지역으로 선정되었으며, 다양한 토지이용시나리오 및 LID 시설 설계용량에 대한 강우유출수 모의를 위하여 EPA SWMM이 구축되었다. 연구대상지역이 개발이전에 임야지역 또는 농경지역이라 가정하였을 경우, 도시 개발 이후에도 유황곡선이 도시 개발 전과 동일하게 유지되기 위해서는 불투수지역의 7.3% 또는 5.5%를 생태저류지의 면적으로 할당해야 함을 확인하였다. 또한 지역별 강우특성에 따른 생태저류지 설계용량의 민감도 분석을 수행한 결과, 농경지역의 개발 시에는 불투수지역의 3.8~5.5% 정도의 설계용량이 필요한 것으로 나타남에 따라 지역별 강우특성에 따라 생태저류지의 최적용량이 유의하게 달라질 수 있음을 살펴볼 수 있었다. 반면에, 생태저류지 각 층별 깊이의 변화에 따른 설계용량의 민감도 및 처리대상구역의 크기에 따른 민감도를 분석한 결과, 생태저류지의 설계 제원 및 처리대상구역의 크기에 따른 최적설계용량의 민감도는 크지 않은 것으로 나타났다.

생태저류지 LID 시설의 설계 및 평가를 위한 삭감대상부하비 산정방법 개선 (mprovement of Estimation Method of Load Capture Ratio for Design and Evaluation of Bio-retention LID Facility)

  • 최정현;이옥정;김용석;김상단
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.569-578
    • /
    • 2018
  • To minimize the negative alterations in hydrologic and water quality environment in urban areas due to urbanization, Low Impact Development (LID) techniques are actively applied. In Korea, LID facilities are classified as Non-point Pollution Reduction Facilities (NPRFs), and therefore they are evaluated using the performance evaluation method for NPRFs. However, while LID facilities are generally installed in small, distributed configuration and mainly work with the infiltration process, the existing NPRFs are installed on a large scale and mainly work with the reservoir process. Therefore, some limitations are expected in assessing both facilities using the same method as they differ in properties. To solve these problems, in this study, a new method for performance evaluation was proposed with focus on bio-retention LID facilities. EPA SWMM was used to reproduce the hydrologic and water quality phenomena in study area, and SWMM-LID module used to simulate TP interception performance by installing a bio-retention cell under various conditions through long-term simulations. Finally, an empirical formula for Load Capture Ratio (LCR) was derived based on storm water interception ratio in the same form as the existing method. Using the existing formula in estimating the LCR is likely to overestimate the performance of interception for non-point pollutants in the extremely low design capacity, and also underestimate it in the moderate and high design capacity.

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

친환경 원가 절감형 바이오바인더를 이용한 다층 도공지 제조(제2보) - Top-coating층에 대한 적용 - (Manufacturing of Multi-Layer Coated Paper with Eco-Friendly BioBinder for Cost Saving(2) - Application for Top-Coating Layer -)

  • 안국헌;최기순;원종명;이용규
    • 펄프종이기술
    • /
    • 제47권1호
    • /
    • pp.10-16
    • /
    • 2015
  • Bio-binder is well known as a promising alternative binder for SB latex because it is eco-friendly and inexpensive, compared to synthetic latex. SB latex in top coating color was substituted with starch-based bio-binder to investigate its effects on the coating color and its coated paper properties. Bio-binder contributed to the increase of coating color viscosity, and the improvement of water retention. Most optical properties except opacity were deteriorated by the increase of bio-binder dosage. It was also found that the increase of bio-binder substitution in top coating color brought about the increase of roughness, and decrease of coated paper gloss, print gloss, dry and wet pick strength. However the stiffness and the ink set-off of the bio-binder coated paper were improved. Overall, mostly adverse effects of bio-binder on the properties of coating color and its paper were observed. Therefore, it is not recommended to use bio-binder as top coating color.

친환경 전분계 바이오 바인더를 이용한 다층 도공지 제조(제1보) - 바이오 바인더의 적용 가능성 - (Manufacture of Multi-Layer Coated Paper with Eco-Friendly Starch Based Bio-Binder(1) - Application Possibility of Bio-Binder -)

  • 안국헌;최기순;원종명;이용규
    • 펄프종이기술
    • /
    • 제44권5호
    • /
    • pp.32-38
    • /
    • 2012
  • This study was carried out to elucidate the potential in substitution of SB latex with eco-friendly starch based bio-binder as a coating binder. The part of SB latex in coating color of pre- and top layer was substituted with starch based bio-binder in order to evaluate the characteristics of coating color and coated paper, and printability. The viscosity and water retention of coating color were increased by substitution of SB latex with starch based bio-binder. Roughness of coated paper was increased by substitution with starch based bio-binder, although there was not significant changes in roughness when SB latex is used as a binder in pre-coating color. Brightness and whiteness of coated paper were not affected, but opacity and print mottle were improved by substitution with starch based bio-binder. The interesting result observed was that dry-pick did not affected significantly, and ink set-off was improved by starch based bio-binder. It is expected that starch based bio-binder can be commercialized if the systematic further research works are carried out.