• 제목/요약/키워드: Bio-fuel

검색결과 342건 처리시간 0.03초

신재생에너지 분야 정부 R&D 투자 효율성 분석 (Analysis on Efficiency of Government's R&D investment in Renewable Energy)

  • 백철우
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.42-50
    • /
    • 2014
  • 정부는 국가연구개발사업을 통해 매년 4,000억원 이상 신재생에너지 분야 R&D에 투자하고 있다. 본 연구는 신재생에너지 분야 정부 R&D 투자의 효율성을 측정하고, 비효율성의 원인을 파악하는데 있다. 이를 위해 2009-2011년 동안 정부가 신재생에너지 분야에 지원한 4,213개 R&D 과제를 대상으로 자료포락분석(DEA)과 통계검증을 실시하였다. 분석결과에 따르면 수소, 바이오, 연료전지, 태양광 등이 다른 신재생에너지에 비해 상대적으로 R&D 효율성이 높게 나타났다. 또한 대학이 기업에 비해 보다 효율적으로 R&D 과제를 수행하였으며, 기업 내에서도 중소기업이 대기업에 비해 R&D 효율성이 높은 것으로 분석되었다. 마지막으로, R&D 비효율성은 과다한 총사업비나 논문실적 저조보다는 주로 국내외 특허실적 저조에 기인한 것으로 확인되었다.

염료감응 태양전지를 위한 Maleinized Acrylated Epoxidized Soybean Oil를 이용하여 제조된 광촉매의 특성에 관한 연구 (A Study on the Characteristics of Manufactured Photocatalyst Using maleinized Acrylated Epoxidized Soybean Oil for the Dye-sensitized Solar Cell)

  • 박기민;김태영;김정국;조성용
    • Korean Chemical Engineering Research
    • /
    • 제49권3호
    • /
    • pp.381-386
    • /
    • 2011
  • 염료감응형 태양전지의 광전극용 바인더로 화학적으로 기능기 작용을 가진 식물성 오일인 maleinized acrylated epoxidized soybean oil(MAESO)를 이용하였다. 제조된 광촉매의 특성을 고찰하기 위해 FE-SEM, EDS, XRD, XPS, 그리고 질소 흡착법(BET) 분석을 수행하였다. 식물성 오일 바인더를 이용하여 제조된 $TiO_{2}$ 입자는 P-25 광촉매와 비교하여 볼 때 비표면적과 특정한 크기를 갖는 세공의 수가 증가하였는데 이는 광촉매에 기능기가 증가하였기 때문이다. 기능기가 첨가된 $TiO_{2}$ 입자 표면에서 OH 관능기는 9.9에서 16.62%로 증가하였다.

Characterization of Urease-Producing Bacteria Isolated from Heavy Metal Contaminated Mine Soil

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.391-397
    • /
    • 2014
  • Acid mine drainage occurrence is a serious environmental problem by mining industry; it usually contain high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of greatest concern. It causes mine impacted soil pollution with mining and smelting activities, fossil fuel combustion, and waste disposal. In the present study, three bacterial strains capable of producing urease were isolated by selective enrichment of heavy metal contaminated soils from a minei-mpacted area. All isolated bacterial strains were identified Sporosarcina pasteurii with more than 98% of similarity, therefore they were named Sporosarcina sp. KM-01, KM-07, and KM-12. The heavy metals detected from the collected mine soils containing bacterial isolates as Mn ($170.50mg\;kg^{-1}$), As ($114.05mg\;kg^{-1}$), Zn ($92.07mg\;kg^{-1}$), Cu ($62.44mg\;kg^{-1}$), and Pb ($40.29mg\;kg^{-1}$). The KM-01, KM-07, and KM-12 strains were shown to be able to precipitate calcium carbonate using urea as a energy source that was amended with calcium chloride. SEM-EDS analyses showed that calcium carbonate was successfully produced and increased with time. To confirm the calcium carbonate precipitation ability, urease activity and precipitate weight were also measured and compared. These results demonstrate that all isolated bacterial strains could potentially be used in the bioremediation of acidic soil contaminated by heavy metals by mining activity.

목질계 바이오에탄올 제조공정에서 열화학적 전처리에 관한 고찰 (A review on thermochemical pretreatment in Lignocellulosic bioethanol production)

  • 고재중;윤상린;강성원;김석구
    • 유기물자원화
    • /
    • 제16권1호
    • /
    • pp.79-88
    • /
    • 2008
  • 지구온난화에 따른 대체연료의 하나로 바이오에탄올의 생산이 증대되면서 곡물가격 상승과 같은 문제를 야기하고 있다. 차세대 바이오에탄올의 원료로서 목질계 바이오매스는 큰 잠재성에도 불구하고 높은 생산단가로 인하여 상업화 되지는 않고 있다. 생산단가의 절감을 위해 필요한 핵심기술은 가수분해율을 높이고 단당의 회수율을 높이는 것으로 전체 바이오에탄올 생산공정에서 열화학적 전처리이다. 본 연구에서는 목질계 바이오에탄올 제조공정에서의 열화학적 전처리에 대하여 소개하고 극복해야 할 문제들에 대하여 제시하고자 한다. 산, 알칼리, 열수, 용매, 암모니아, 산소 등을 첨가하는 전처리는 리그닌과 헤미셀룰로오스를 제거하고 셀룰로오스의 결정성을 감소시킨다. 이러한 전처리 방식들은 침엽수, 활엽수, 곡식의 줄기 등 목질계 원료에 따라 최적의 처리 조건들이 확립되어져야 한다.

  • PDF

층류 부상 화염의 화염부상 높이 감소 구간에서 교류 전기장이 인가된 화염에 관한 영향 (Effect of AC Electric Field on Decreasing Liftoff Height in Laminar Lifted Jet Flames)

  • 서보현;반규호;김경택;박정;길상인;김세원;정석호
    • 한국연소학회지
    • /
    • 제22권3호
    • /
    • pp.17-22
    • /
    • 2017
  • An experimental study has been conducted to elucidate the effect of AC electric field on behaviors of laminar lifted flame in nitrogen-diluted methane coflow-jets. Our concerns are focued on the regime to show a decrease in liftoff height, $H_L$ with increasing nozzle exit velocity, $U_O$ (hereafter, $decreasing-H_L$). The $H_L$ with $U_O$ near flame extinction were measured by varying the applied AC voltage, $V_{AC}$ and frequency, $f_{AC}$ in a single electrode configuration. The behavior of $H_L$ with a functional dependency of $V_{AC}$ and $f_{AC}$ was categorized into two regime : (I) $H_L$ decreased for nozzle diameter, D = 1.0 mm, and (II) $H_L$ increased in the increase of $f_{AC}$ for a fixed $V_{AC}$ in a D = 4.0, 8.4 mm. The lifted flames in $decreasing-H_L$ region was unstable in high voltage regimes while the $H_L$ showed a decreasing tendency with $U_O$ except them. Such behaviors in $H_L$ were also characterized by functional dependencies of related physical parameters such as $V_{AC}$, $f_{AC}$, $U_O$, fuel mole fraction ($X_{F.O}$) and D.

목재펠릿 도입에 따른 시설재배의 경제적.환경적 타당성 분석 -목재펠릿과 경유의 비교분석을 중심으로- (Economical and Environmental Feasibility of Cultivation under Structure Due to the Introduction of Bio-energy -Comparative Analysis of Wood Pellets and Diesel-)

  • 양정수;윤성이
    • 한국유기농업학회지
    • /
    • 제21권3호
    • /
    • pp.335-350
    • /
    • 2013
  • With the efforts to development of renewable energy technologies, and increasing awareness to environmental issues, the usage of wood pallets has been increasing every year since the introduction of wood pallet technology to the domestic market. until 2009, majority usage of pellet boiler was in the residential houses. In an effort to increase the distribution of wood pellet boiler to cultivation facilities with high usage of fuels, The Ministry of Agriculture and Forestry has launched a distribution project of wood pellet boiler for fuel usage as a part of the agricultural and fishery energy efficiency projects. Although only small number of farms with a heat-culturing facility have replaced from conventional boiler to pellet boiler. Although part of reason for low usage of pallet boiler is lack of understanding and information of it, the main reasons are high initial cost and uncertainty of its cost efficiency. Also, most people from agricultural industry don't realize it's significance in terms of environmental benefit due to lack of understanding in 'resource circulation' and 'adopting to climate change'. In this study, first, we did a cost-efficiency analysis of the farm which uses a diesel boiler to grow cucumber, tomato, paprika. Then we replaced the diesel boiler to a pallet boiler and measured its cost-efficiency again. By comparing the cost-efficiency of the diesel boiler with the pellet boiler, we analyzed the economic viability of pellet boiler. Then we analyzed viability of pallet boiler usage in terms of 'resource circulation' and 'adopting to climate change'. As a result of our analysis, we have found out that under the current system of government support, the energy usage varies depends of the types crops grown and the higher the energy use, the more cost efficient it is to use the pallet boiler. Also, it is economically viable to use the pallet boiler in terms of 'resource circulation' and 'adopting to climate change'.

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • 제38권3호
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.

Study on Emission Control for Precursors Causing Acid Rain (VI) : Suitability of Aquatic Plant Biomass as a Co-combustion Material with Coal

  • Hauazawa, Atsushi;Gao, Shidong;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권2호
    • /
    • pp.102-108
    • /
    • 2008
  • In China, energy and environmental problems are becoming serious owing to rapid economic development. Coal is the most problematic energy source because it causes indoor and outdoor air pollution, acid rain, and global warming. One type of clean coal technology that has been developed is the coal-biomass briquette (or bio-briquette, BB) technique. BBs, which are produced from pulverized coal, biomass (typically, agricultural waste), and a sulfur fixation agent (slaked lime, $Ca(OH)_2$) under high pressure without any binder, have a high sulfur-fixation effect. In addition, BB combustion ash, that is, the waste material, can be used as a neutralization agent for acidic soil because of its high alkalinity, which originates from the added slaked lime. In this study, we evaluated the suitability of alternative biomass sources, namely, aquatic plants, as a BB constituent from the perspective of their use as a source of energy. We selected three types of aquatic plants for use in BB preparation and compared the fuel, handling, and environmental characteristics of the new BBs with those of conventional BBs. Our results showed that air-dried aquatic plants had a higher calorific value, which was in proportion to their carbon content, than agricultural waste biomass; the compressive strength of the new BBs, which depends on the lignin content of the biomass, was high enough to bear long-range intracontinental transport in China; and the new BBs had the same emission control capacity as the conventional BBs.

산림수확 시뮬레이터 HARVEST 응용에 의한 벌채지 공간배치 사례연구 (A Case Study of Spatial Allocation of Cut Blocks Using a Timber Harvest Simulator HARVEST)

  • 송정은;장광민;한희;설아라;정우담;정주상
    • 한국산림과학회지
    • /
    • 제101권1호
    • /
    • pp.96-103
    • /
    • 2012
  • 본 연구에서는 산림수확계획 수립에 있어 벌채지 선정에 효과적으로 활용될 수 있는 수확분배시뮬레이션 모델의 도입을 위한 사례연구를 수행하였다. 이를 위해 Gustafson과 Crow가 개발한 HARVEST를 산림수확 공간분배 모델로 선정하고 국립산림과학원의 광릉시험림을 대상으로 벌채구획의 면적제한, 벌채지 선정방법, 및 벌채지 연접제한과 같은 기본적인 산림수확 경영방침을 적용하여 모델의 적용성을 검토하였다. 연구결과 벌채 구획의 면적제한 조건의 경우 허용벌채면적이 커질수록 벌채구획의 수는 적어지고 벌채구획간의 거리는 멀어지는 것으로 나타났다. 또한 임의산개형, 군상형 군상택벌형 및 영급순 등 벌채임분의 선정방법을 달리하여 수확 시뮬레이션에 적용한 경우 군상택벌형을 제외하고 벌채구획의 크기와 개소 수는 비슷한 경향을 나타내었으나 벌채지간 거리에서 차이를 나타내었다. 벌채지의 연접제한은 이미 벌채된 임분 주변에서의 벌채를 제한하므로 벌채구획의 수를 증가시키는 효과를 나타냈다. 이상의 연구결과를 종합한 결과 HARVEST는 산림수확을 수행하는데 있어 다양한 경영목표에 따라 벌채구획의 수와 공간분포의 정도를 조절할 수 있는 효과적인 도구로 평가되었다.

첨가제로서 율피차 부산물과 피마자유가 리기다소나무 및 신갈나무 펠릿의 연료적 특성에 미치는 영향 (Effect of Chestnut-shell Tea Waste and Castor Oil as an Additive on Fuel Characteristics of Pellets Fabricated with Pitch Pine and Mongolian Oak)

  • 김현정;양인;한규성
    • 신재생에너지
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2022
  • This study aimed to determine the optimal conditions for fabricating pitch pine (PCP) and Mongolian oak (MOK) pellets using chestnut-shell tea waste (CSW) and castor oil (CSO) as additives. For pellets fabricated using a pilot-scale flat-die pellet mill, all moisture content (MC) was in line with A1 wood pellet standards for residential and small-scale commercial uses designated by the National Institute of Forest Science at the Republic of Korea (NIFOS), regardless of fabricating conditions; the durability of PCP pellets prepared using PCP particles with 10% MC, and CSW addition also satisfied these criteria. The moisture tolerance of PCP pellets improved with combination of 2 wt% CSW and 2-6 wt% CSO. Overall, use of 20 mesh CSW as an additive, PCP with 10% MC, and MOK with 12% MC was found to be optimal. Moreover, using CSO as an additive, high-quality PCP and MOK pellets can be fabricated by adjusting the particles to 12% MC. However, the durability of PCP and MOK pellets prepared using these conditions did not meet the wood pellet standards for residential and small-scale commercial use. Therefore, further research is needed to improve the durability of these pellets.