• Title/Summary/Keyword: Bio-concrete

Search Result 87, Processing Time 0.025 seconds

Compressive Strength and Fire Resistance Performance of High Strength Concrete with Recycled Fiber Power from Fiber-Reinforced Plastics (재활용 FRP 미분말을 혼입한 고강도 콘크리트의 압축강도 및 내화성능)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • Increasing of waste FRP (fiber reinforced plastics) has caused environmental problems. Recently, the technology of making fibers from waste FRP, which can be used to reinforce the concrete, was developed and the reinforced concretes were tested to study the structural performance. The purpose of this study is to investigate the effect of the powder, obtained together with F-fiber from the waste FRP, on the compressive strength and the fire resistance performance as in the high strength concrete. Strength tests show that the use of recycled FRP powder does not reduce the compressive strength of high strength concrete if the volume fraction of FRP powder is less than 0.7%. Electric furnace test results also show that the use of recycled FRP powder may increase the fire resistance performance of high strength concrete significantly.

A Study on Promotion of Domestic Timber Utilization According to Dwelling Type Comparison of Between Korea and Japan (한일 주거형태 비교에 의한 국산재 이용 증진 방안 고찰)

  • Yeon, Jung-Youn;Pi, Duck-Won;Kang, Seog-Goo
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • In this study, a dwelling type of Korea and Japan was compared, and consumption rate of domestic timber and its usage was also investigated. In Korea, dwelling type of apartment which constructed by iron and steel-concrete is main shared, but a detached house which is shared at 60% of dwelling type of Japan is mainly constructed by timber. And the rate of the consumption of domestic wood in Japan is 73%. In Japan, there is an effort to substitute imported wood to domestic timber through the promotion of using of domestic timber. Whereas the needs on using of domestic timber gradually emerged. So, the legal about sustainable use of wood is approved by the National Assembly on May 2012. There is not active movement in the aspect of using of domestic timber yet. These causes to the geographical and environmental characteristics, but industry, policy, and the difference of recognize on domestic timber utilization is thought to do greater influence. Hence, it is recommended to make a portfolio of both balanced domestic timber usage and the change of awareness of people by referring to the example of Japan.

  • PDF

ALC(Autoclaved Light-weight Concrete)를 이용한 생물학적 반응벽체에 관한 연구

  • Park Geun-Min;Lee Jae-Yeong;O Byeong-Taek;Choi Sang-Il
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.402-406
    • /
    • 2006
  • The physical and chemical characteristics of ALC were analyzed and showed 2.2 of specific gravity and 9.05 of pH. The results of leaching tests with standard method for soil and waste indicated heavy metals(Cu, Cd, Pb, $Cr^{6+}$) were under maximum concentration level. The anaerobic digestion sludge was attached in the surface of ALC within 90 hours. As the results of batch test, pH of the ALC and Bio-ALC were decreased from initial pH of ALC to 8.7 and 7.8 respectively Also, the concentration of heavy metals was rapidly eliminated in the solution with the batch test. The result of column experiment indicates that the removal efficiency of ALC was showed 66% of T-P, 60% of T-N, and 67% of CODcr. Also, removal efficiency of Bio-ALC was slightly higher than that of ALC in T-N (64%) and CODcr (74%).

  • PDF

Recycling of Shingle Waste for Pavement Asphalt Concrete (도로포장용 아스콘으로 슁글의 재활용)

  • Hong, Young-Ho;Kwon, Young Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.614-618
    • /
    • 2006
  • Recycling of asphalt including shingle is much important for economic aspects such as a decrease of treatment cost. This research was carried out in order to process the recycled shingle to asphalt concrete which is a pavement material. Pure asphalt and the mixture of recycled asphalt were tested in terms of the thermal characteristics, viscosity, and penetration. DSC analysis indicates that the thermal characteristics of separate shingle showed similar properties regardless of processing conditions. Melting of asphalt separated from shingle occurred at $170^{\circ}C$. The viscosity and penetration of the 1~5 wt% of mixed recycling asphalt and raw material asphalt are suitable for the pavement material standard.

Application of shrinkage prediction models to restraint crack formation in unbonded post-tensioned slabs

  • Gabriela R. Martínez Lara;Myoungsu Shin;Yong-Hoon Byun;Goangseup Zi;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.349-359
    • /
    • 2024
  • This study aims to investigate the effect of restraint configuration on crack formation due to shrinkage-and-creep-induced volumetric change in unbonded post-tensioned slabs. The first part of this study focuses on the comparison of existing shrinkage and creep calculation models that are used to predict the volume-changing behavior of concrete. The second part of this study presents the finite element analysis of a series of architectural configuration prototypes subjected to shrinkage and creep, which comprise unbonded post-tensioned slabs with various restraint configurations. The shrinkage and creep effects were simulated in the analysis by imposing strains obtained from one selected calculation model. The results suggest that a slab up to 300 ft. (90 m) in length does not require a closure strip if it is unrestrained by perimeter walls, and that the most effective restraint crack mitigation strategy for a slab restrained by perimeter walls is a partial wall release.

Observation of reinforcing fibers in concrete upon bending failure by X-ray computed tomographic imaging

  • Seok Yong Lim;Kwang Soo Youm;Kwang Yeom Kim;Yong-Hoon Byun;Young K. Ju;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.433-442
    • /
    • 2023
  • This study presents the visually observed behavior of fibers embedded in concrete samples that were subjected to a flexural bending test. Three types of fibers such as macro polypropylene, macro polyethylene, and the hybrid of steel and polyvinyl alcohol were mixed with cement by a designated mix ratio to prepare a total of nine specimens of each. The bending test was conducted by following ASTM C1609 with a net deflection of 2, 4, and 7 mm. The X-ray computed tomography (XCT) was carried out for 7 mm-deflection specimens. The original XCT images were post-processed to denoise the beam-hardening effect. Then, fiber, crack, and void were semi-manually segmented. The hybrid specimen showed the highest toughness compared to the other two types. Debonding based on 2D XCT sliced images was commonly observed for all three groups. The cement matrix near the crack surface often involved partially localized breakage in conjunction with debonding. The pullout was predominant for steel fibers that were partially slipped toward the crack. Crack bridging and rupture were not found presumably due to the image resolution and the level of energy dissipation for poly-fibers, while the XCT imaging was advantageous in evaluating the distribution and behavior of various fibers upon bending for fiber-reinforced concrete beam elements.

The Effects of Impurity Composition and Concentration in Reactor Structure Material on Neutron Activation Inventory in Pressurized Water Reactor (경수로 구조재 내 불순물 조성 및 함량이 중성자 방사화 핵종 재고량에 미치는 영향 분석)

  • Cha, Gil Yong;Kim, Soon Young;Lee, Jae Min;Kim, Yong Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.91-100
    • /
    • 2016
  • The neutron activation inventories in reactor vessel and its internals, and bio-shield of a PWR nuclear power plant were calculated to evaluate the effect of impurity elements contained in the structural materials on the activation inventory. Carbon steel is, in this work, used as the reactor vessel material, stainless steel as the reactor vessel internals, and ordinary concrete as the bio-shield. For stainless steel and carbon steel, one kind of impurity concentration was employed, and for ordinary concrete five kinds were employed in this study using MCNP5 and FISPACT for the calculation of neutron flux and activation inventory, respectively. As the results, specific activities for the cases with impurity elements were calculated to be more than twice than those for the cases without impurity elements in stainless and carbon steel. Especially, the specific activity for the concrete material with impurity elements was calculated to be 30 times higher than that without impurity. Neutron induced reactions and activation inventories in each material were also investigated, and it is noted that major radioactive nuclide in steel material is Co-60 from cobalt impurity element, and, in concrete material, Co-60 and Eu-152 from cobalt and europium impurity elements, respectively. The results of this study can be used for nuclear decommissioning plan during activation inventory assessment and regulation, and it is expected to be used as a reference in the design phase of nuclear power plant, considering the decommissioning of nuclear power plants or nuclear facilities.

Investigation on Water Purification Effect Through Long-Term Continuous Flow Test of Porous Concrete Using Effective Microorganisms (유용미생물을 이용한 포러스 콘크리트의 장기간 연속흐름 실험을 통한 수질정화 효과 검토)

  • Park, Jun-Seok;Kim, Bong-Kyun;Kim, Woo-Suk;Seo, Dae-Sok;Kim, Wha-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.219-227
    • /
    • 2014
  • The purpose of this study is to investigate water purification properties of porous concrete by using effective microorganisms through the long-term continuous flow test. To solve the problems such as desorption of conventional microorganisms, in this study, tertiary treatment of the effective microorganisms identified by 16S rDNA sequence analysis was adopted per each step in the manufacturing process of porous concrete. And concentration for optimum continuous flow test and operation conditions through basic experiments according to retention time were investigated. Based on the experimental results, the porous concrete applying effective microorganisms showed no toxicity on the biological water quality and exhibited excellent removal efficiency than normal porous concrete. Therefore, contaminated water quality would be improved by treatment performance investigation of contaminants through long-term continuous flow test. If problems are complemented during the experiment process, it is expected to be able to reduce the non-point pollution sources flowing into river.

Strength Characteristics of 3D Printing Concrete for Exterior materials using Accelerating agent (급결제를 사용한 외장재용 3D 프린팅 콘크리트의 강도 특성)

  • Seo, Dae-Seuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.267-272
    • /
    • 2021
  • In this study, the output results of 3D printed exterior materials for application to buildings of various shapes are output tests using test specimens, in which 3D printing concrete is cast in a mold and accelerating agents are used to ensure stackability. The unit weight and strength characteristics of the body were analyzed. Compared to the unit weight of concrete placed in the mold, the unit weight of 3D printing concrete using accelerating agents tends to decrease by approximately 3.5% to 5.0%, and the compressive strength is the compressive strength of the concrete placed in the mold. In comparison, the compression strength of the output by 3D printing tended to decrease by approximately 36% to 46%. In the flexural strength, the compressive strength of the output through 3D printing decreased by approximately 36% to 46% compared to the compressive strength of concrete placed in the mold. The impact on the strength characteristics of 3D printed concrete using accelerating agents tended to decrease by approximately 2.0 to 5.8%. Therefore, 3D printing output accelerating agents can be used.

Experimental Study on the Stress Variation of Concrete Containing F-fiber Extracted from Waste FRP (폐 FRP로부터 분리한 F-섬유를 이용한 콘크리트 강도 특성 변화에 대한 실험적 연구)

  • Yoon, Koo Young;Park, Jong Won;Lee, Seung Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.42-45
    • /
    • 2014
  • Even though to discard the waste FRP (Fiber-Reinforced Plastic) is urgent and problematic, the way to do it has not been efficient. In our project team the FRP have been splitted into some layers which have different physical properties; mat and roving layers. Among those, the roving layer woven like a basket by bundles of glass fibers has been cut into reusable fibers called 'F-fiber'. F-fiber is 1 mm or 3 mm in width and 3 cm in length. It is used in fiber-reinforced concrete (FRC) with 0.5%, 0.7%, 1.0%, or 1.5% of volume ratio. Produced FRC was tested in compressive, tensile, and bending stress in contrast to the without-fiber (standard) concrete and 0.1% polypropylene reinforced concrete (PP-FRC). The tensile and bending stresses are more or less those of PP-FRC. The compressive stress, however, is similar (with 3 mm F-fiber) to or lower (with 1 mm F-fiber) than that of standard concrete. Conclusively the usage of the waste FRC in concrete is advised to be limited to the one where the compressive stress is not much critical.