• Title/Summary/Keyword: Bio-SRF (Bio-Solid Refuse Fuel)

Search Result 4, Processing Time 0.021 seconds

Sales Energy Promotion Efficiency and Policy Utilization Plan for Energy Facilities

  • KWON, Lee-Seung;LEE, Woo-Sik;KWON, Woo-Taeg
    • Journal of Distribution Science
    • /
    • v.18 no.9
    • /
    • pp.67-75
    • /
    • 2020
  • Purpose: The purpose of this study is to enhance sales promotion efficiency for using solid refuse fuel facilities. Renewable energy technology using Solid Refuse Fuel (SRF) is an economic efficiency technology that recovers waste by burning various wastes. A survey on the pollutants discharged from the solid fuels facilities was investigated so that the SRF facilities could be expanded, distributed and reflected in the policy. Research design, data, and methodology: In this study, 9 business sites using SRF and Bio-SRF as main raw materials were investigated for 2 years. The characteristics of target business sites such as the type of fuel used, combustion method, combustion temperature, daily fuel consumption and environmental prevention facilities were studied. Results: The average pollution & ammonia concentration of Bio-SRF facilities was found to be 88.15% higher than that of SRF facilities. But the average acetaldehyde concentration of SRF facilities was found to be 88.15% higher than that of Bio-SRF facilities. Conclusions: The main issue is how much electric power generation using combustible materials affects air pollution. The waste recycling law provides the standard value according to the fuel property, but there is a considerable gap with the mixed fuel. Therefore, for efficient utilization of facilities using solid fuel products, additional research is needed to improve the distribution structure of exhaust pollutants is needed.

Estimation of Characteristics Treatment for Food Waste and Valuable as Solid Refuse Fuel (SRF) using Bio-drying Process (Bio-drying 공법을 이용한 음식물류 폐기물 분해 특성 평가 및 고형연료로서의 가치 평가)

  • Jeong, Cheoljin;Park, Seyong;Oh, Dooyoung;Jang, Eun-Suk;Song, Hyoungwoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • In this study, water and organic treatment efficiency and operating characteristics (temperature, salinity effect) were evaluated when food waste with high water content was treated by Bio-dying method. In addition, the optimum conditions for producing pellets for evaluating the decomposition products as SRF(Solid Refuse Fuel) after Bio-drying and evaluating the use value of SRF as a solid fuel were analyzed. As a result, the temperature, $CO_2$ concentration, organic matter removal rate and weight reduction rate according to the daily dose were about 86% and 68% at the input of 2.4 kg/day. The optimal food waste input was estimated to be 2.4 kg/day. As a result of the pellet molding and produce, Pellets can be produced within 10~25% of raw material water content. It was judged that the water content of 25%, which showed the best quality results in terms of external shape maintenance and strength. The high calorific value of SRF of decomposition products after Bio-drying was more than 3,500 kcal/kg.

Evaluation of Hydrothermal Carbonization Characteristics for Solid Fuel Conversion of Cow Manure (우분의 고형연료화를 위한 수열탄화 특성 평가)

  • Seong Kuk Han;Moonil Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.45-52
    • /
    • 2023
  • As of 2020, 139,753 tons/day of livestock manure is generated. Most of the livestock manure is made of compost(75.3%) and Liquor(11.7%) and is spread on farmland. The compost and Liquor of these livestock manure are the main causes of water pollution. Therefore, it is necessary to convert livestock manure into energy. For this reason, hydrothermal carbonization technology was applied to evaluate the physical and chemical properties. Among livestock manure, cow manure was used. Through hydrothermal carbonization, it was confirmed that the HHV (Kcal/kg) of 3,101 kcal/kg of raw material rises to more than about 3,800 kcal/kg at 220℃ or higher. This result was judged to be influenced by carbonization through a clear trend of decrease in O/C and H/C ratios. As a result, the value of Bio-SRF was evaluated through hydrothermal carbonization of cow manure, and All other items except for chlorine showed satisfactory results.

Effect of Flocculant Injection Ratio in NIR (Near-Infrared Ray) Drying for BIO-SRF (Solid Recovered Fuel) of Swage Sludge (하수슬러지 BIO-SRF (Solid Recovered Fuel) 생산을 위한 NIR (Near Infrared Ray) 건조시 응집제 주입비율이 미치는 영향)

  • Lee, Kang-min;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • This study executed evaluation of drying characteristics based on the polymer injection rate (8%, 10% and 12%) and the drying method[NIF(near-infrared ray). According to this study analyzed VS, VS/TS, and calorific value compared with 'the auxiliary fuel standard of the thermoelectric power plant and the combined heat & power plant'. The results are as follows. In the case of NIR, the VS was slightly changed at the early stage of the material preheating period and the constant drying rate period with low moisture evaporation. But VS reduction was shown higher as moisture was dried. In the case of non-digested sludge with high VS content, the VS reduction rate by drying was shown lower than that of digested sludge. As the flocculant injection rate increased, the VS loss due th drying was found to be small. Also, the higher the flocculant injection rate was the longer the drying time. Especially, in the case of the NIR drying equipment, as the moisture content of sewage sludge decreased(moisture content 20~40%), the loss of net VS also showed a tendency to increase sharply. It is shown that the high calorific value according to the drying time of the non-digested sludge was changed from 590 kcaℓ/kg to 3,005 kcaℓ/kg and from 539 kcaℓ/kg to 2,796 kcaℓ/kg.