• Title/Summary/Keyword: Bio composite

Search Result 252, Processing Time 0.026 seconds

Optimization of Gelatin Extracting Condition from Korean Native Black Goat Skin and Quality Comparison with Commercial Gelatin

  • Youn-Kyung Ham;Sin-Woo Noh;Jae-Hyeok Lee;Na-Eun Yang;Yun-Sang Choi;Hyun-Wook Kim
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.61-72
    • /
    • 2023
  • The practical use of Korean native black goat skin as a source of gelatin extraction is limited. The objective of this study was to optimize the extraction temperature and time of gelatin from Korean native black goat skin, and to compare the quality characteristics of goat skin gelatin and other commercial gelatin products. Response surface methodology was applied to optimize the extraction temperature and time of gelatin obtained from native Korean black goat skin. The effects of temperature (50℃-70℃) and time (2-4 h) on extraction yield and gel strength were investigated using a face-centered central composite design with 13 experiments. Gelatin extraction from Korean native black goat skin was prepared through the serial processes of alkali pre-treatment, bleaching, neutralization, hot-water extraction, and freeze-drying. Using the optimization plot of Minitab software, the optimized conditions for extracting temperature and time of goat skin gelatin were 59.49℃ and 3.03 h, and the optimized values of extraction yield and gel strength were 12.52% and 263.37 g, respectively. Based on a quality comparison of goat skin gelatin with commercial gelatin, the pH value of gelatin extracted from Korean native black goat skin was 5.57. The color of gelatin extracted from Korean native black goat skin was darker than that of commercial gelatin (p<0.05). Higher emulsifying properties and gel strength of goat skin gelatin were observed when compared to those of commercial gelatin (p<0.05). Therefore, the results of this study indicate that Korean native black goat skin may be a valuable source for gelatin extraction.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

Optimization of a Medium for the Production of Cellulase by Bacillus subtilis NC1 Using Response Surface Methodology (반응 표면 분석법을 사용한 Bacillus subtilis NC1 유래 cellulase 생산 배지 최적화)

  • Yang, Hee-Jong;Park, Chang-Su;Yang, Ho-Yeon;Jeong, Su-Ji;Jeong, Seong-Yeop;Jeong, Do-Youn;Kang, Dae-Ook;Moon, Ja-Young;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.680-685
    • /
    • 2015
  • Previously, cellulase and xylanase producing microorganism, Bacillus subtilis NC1, was isolated from soil. Based on the 16S rRNA gene sequence and API 50 CHL test the strain was identified as Bacillus subtilis, and named as B. subtilis NC1. We cloned and sequenced the genes for cellulase and xylanase. Plus, the deduced amino acid sequences from the genes of cellulase and xylanase were determined and were also identified as glycosyl hydrolases family (GH) 5 and 30, respectively. In this study to optimize the medium parameters for cellulase production by B. subtilis NC1 the RSM (response surface methodology) based on CCD (central composite design) model was performed. Three factors, tryptone, yeast extract, and NaCl, for N or C source were investigated. The cellulase activity was measured with a carboxylmethyl cellulose (CMC) plate and the 3,5-dinitrosalicylic acid (DNS) methods. The coefficient of determination (R2) for the model was 0.960, and the probability value (p=0.0001) of the regression model was highly significant. Based on the RSM, the optimum conditions for cellulase production by B. subtilis NC1 were predicted to be tryptone of 2.5%, yeast extract of 0.5%, and NaCl of 1.0%. Through the model verification, cellulase activity of Bacillus subtilis NC1 increased from 0.5 to 0.62 U/ml (24%) compared to the original medium.

A Study on Fuel Characteristics of Mixtures Using Torrefied Wood Powder and Waste Activated Carbon (반탄화 목분과 폐활성탄 혼합물의 복합연료활용을 위한 연료적 특성에 관한 연구)

  • Lee, Chang Goo;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.135-143
    • /
    • 2015
  • This study evaluated fuel properties of composite materials which were prepared by mixing a waste activated carbon from the used purifier filter with torrefied wood powder. Wood species of the raw material of torrefied wood powder are oak wood (Quercus serrata Thunb. ex Murray) and pine wood (Pinus densiflora Siebold & Zucc). And the treatment conditions used for this study were 300 s, 450 s, and 600 s at $200^{\circ}C$ for the wood roaster. Also, the mixing ratios are 5 : 95, 10 : 90, 15 : 85, 20 : 80, 40 : 60, 60 : 40 and 80 : 20 (waste activated carbon : torrefied wood powder). The fuel properties such as highly heating value (HHV), elementary analysis and ash content were evaluated. The results obtained are followings; 1. Despite the same treatment condition of wood roasting, pine wood has higher carbon contents than oak wood. Therefore, pine wood indicated the optimum carbonization at low temperature and short treatment times. 2. The gross calorific value and ash content increased as the mixing ratio of waste activated carbon increased. 3. Mixtures of the waste activated carbon and torrefied wood powder showed greater gross calorific value than those of the mixtures of waste activated carbon and the untreated wood powder. Also, the pine wood resulted in higher heating value that thaose of the oak wood. 4. When composite fuels that were composed waste activate carbon and wood powder are used, higher temperature conditions are required because the combustion is incomplete at $800^{\circ}C$ and 4 hours. 5. The increasing rate of the gross calorific value of mixtures of waste activated carbon and untreated wood powder is higher than does the mixtures of waste activated carbon and torrefied wood powder. Also, this phenomenon is more obvious for pine woods. Therefore, an optimal mixing ratio of waste activated carbon was determined to be between 5% and 10% (wt%). Also, this condition satisfied the requirement of the No.1 grade of wood pellet.

Analysis of Extraction Characteristics of Phytoestrogen Components from Punica granatum L. (석류 phytoestrogen 성분의 추출특성 분석)

  • Kim, Seong-Ho;Kim, In-Ho;Kang, Bok-Hee;Cha, Tae-Yang;Lee, Jin-Hyung;Kim, Jong-Myeong;Rim, Soon-Ok;Song, Kyung-Sik;Song, Bang-Ho;Kim, Jong-Guk;Lee, Jin-Man
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.352-357
    • /
    • 2005
  • The optimization of extraction conditions of phytoestrogen from pomegranate by hot water was conducted by analyzing the extraction characteristics. The purpose of this study was effective utilization of bioactive components of pomegranate, and the analyzing was performed with response surface methodology (RSM). This study established 10 sections based on the central composite design with the independent variables of extraction temperature (60, 70, 80, 90, $100^{\circ}C$) and extraction time (1, 2, 3, 4, 5 hr) to predict the optimal conditions for extraction of the effective components. The dependent variables were measured for extracted materials, those were, the major components such as chlorogenic acid, kaempferol, $17-{\alpha}-estradiol\;and\;17-{\beta}-estradiol$ content, and regression analysis was performed by SAS program, and optimal conditions for each characteristics were predicted, and the characteristics of extraction were analyzed by response surface methodology. It was found that chlorogenic acid, kaempferol, and $17-{\alpha}-estradiol$ content were greatly affected by extraction temperature. However, $17-{\beta}-estradiol$ content was affected significantly by extraction time. Regression formulas for each variable were elicited from this study, and the chlorogenic acid, kaempferol, $17-{\alpha}-estradiol\;and\;17-{\beta}-estradiol$ content depending on response surface methodology factor were superimposed. It was shown that optimal temperature and extraction time were $98{\sim}100^{\circ}C\;and\;3{\sim}5$ hrs, respectively.

Comparison in Seed and Sprout Quality under Different Cropping Patterns in Mungbean (재배방식에 따른 녹두 종실과 나물의 품질변화)

  • Kim, Dong-Kwan;Son, Dong-Mo;Choi, Jin-Gyung;Shin, Hae-Ryong;Chon, Sang-Uk;Lee, Kyung-Dong;Jung, Ki-Yeol;Rim, Yo-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.212-218
    • /
    • 2011
  • This study was performed to determine the relative quality of mungbeans harvested in bulk after applying a labor-saving cultivation (LSC) method, compared to mungbeans harvested three different times under the conventional cultivation condition. There was no significant difference in starch, crude protein, and vitexin or isovitexin content of seed according to the cropping system or harvest time. The mungbeans grown under the LSC method had the highest crude fat content, followed by mungbeans from the third-, the second- and the first-harvest mungbeans under the conventional cultivation. No significant difference was found in the composite ratio of saturated fatty acids to unsaturated fatty acids according to cropping system or harvest time. The second-harvest mungbeans grown under the conventional cultivation condition had 17 different types of fatty acids, while the third-harvest mungbeans grown under the conventional cultivation and those grown under the LSC condition had the fewest types of fatty acids with 12. Of the major saturated fatty acids, palmitic acid and arachidonic acid had the highest composite ratio in the first conventional cultivation followed by the second, the third and the LSC. However, stearic acid showed the opposite tendency. Of the major unsaturated fatty acids, linoleic acid had the highest composite ratio in the first conventional cultivation, followed by the second and third conventional cultivation and the LSC. Amylogram characteristics of the mungbeans were significantly different according to cropping system and harvest times. The mungbeans harvested after the first conventional cultivation had significantly higher pasting temperature, peak viscosity, holding strength viscosity, final viscosity and breakdown, while mungbeans harvested after the third conventional cultivation had significantly higher setback viscosity. In contrast, the mungbeans harvested under the LSC methods had a significantly lower amylogram value. When harvest rate, color values and amino acid content of sprout were measured, mungbeans grown under the LSC conditions had a low harvest rate of sprout, but had Hunter's color values and amino acid content of sprout similar to those of mungbeans grown under the conventional cultivation condition.

Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis (최소 침습적 충진 및 통상적 인레이 법으로 수복한 대구치의 응력 분포: 3-D 유한 요소 해석)

  • Yang, Sunmi;Kim, Seon-mi;Choi, Namki;Kim, Jae-hwan;Yang, Sung-Pyo;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • Purpose: This study aimed to analyze stress distribution and maximum von Mises stress generated in intracoronal restorations and in tooth structures of mandibular molars with various types of cavity designs and materials. Materials and Methods: Three-dimensional solid models of mandible molar such as O inlay cavity with composite and gold (OR-C, OG-C), MO inlay cavity with composite and gold (MR-C, MG-C), and minimal invasive cavity on occlusal and proximal surfaces (OR-M, MR-M) were designed. To simulate masticatory force, static axial load with total force of 200 N was applied on the tooth at 10 occlusal contact points. A finite element analysis was performed to predict stress distribution generated by occlusal loading. Results: Restorations with minimal cavity design generated significantly lower values of von Mises stress (OR-M model: 26.8 MPa; MR-M model: 72.7 MPa) compared to those with conventional cavity design (341.9 MPa to 397.2 MPa). In tooth structure, magnitudes of maximum von Mises stresses were similar among models with conventional design (372.8 - 412.9 MPa) and models with minimal cavity design (361.1 - 384.4 MPa). Conclusion: Minimal invasive models generated smaller maximum von Mises stresses within restorations. Within the enamel, similar maximum von Mises stresses were observed for models with minimal cavity design and those with conventional design.

Elimination of Heavy Metals(Pb, Cd) by Steaming and Roasting Conditions of Polygonatum odoratum Roots (둥굴레 근경의 증자 및 볶음조건에 따른 중금속(Pb, Cd) 제거 특성)

  • Kim Kyung-Tae;Noh Jungeun;Lee Jungeun;Kim Jung-Ok;Lee Gee-Dong;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Response surface methodology(RSM) was applied to monitor the elimination rate of heavy metals(Pb, Cd) and soluble solids depending on the steaming and roasting conditions of Polygonatum odoratum roots. Experiments of 16 different steaming and roasting conditions based on a central composite design for steaming time($60{\sim}180$ min), roasting temperature($110{\sim}150^{\circ}C$), and roasting time($10{\sim}50$ min) were conducted, thereby predicting the steaming and roasting conditions for the maximal responses; soluble solids($71.47\%$) at 65.24 min, $126.93^{\circ}C$ and 37.58 min; Pb removal rate($18.87\%$) at 71.23 min, $119.81^{\circ}C$ and 24.35 min; Cd removal rate($50,85\%$) at 160.89 min, $126.43^{\circ}C$ and 15.81 min, respectively. The optimum conditions estimated by RSM for the maximized values of soluble solids and heavy metal elimination rates were $165{\sim}180$ min of steaming time, $120{\sim}135^{\circ}C$ of roasting temperature, and $30{\sim}45$ min of roasting time, respectively. These estimated values were in agreement with those measured by real experiments.

Optimization of Preparation Condition on Oriental Melon Jam by Response Surface Methodology (반응표면 분석에 의한 참외잼의 제조조건 최적화)

  • Lee Gee-Dong;Kim Suk-Kyung;Lee Myung-Hee
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.216-222
    • /
    • 2005
  • This study was carried out to establish the preparation condition of muskmelon jam. A central composite design was applied to investigate effects of muskmelon paste content(40, 45, 50, 55, 60 g), fructose ratio of sugar(20, 35, 50, 65, $80\%$) and pectin addition(l, 2, 3, 4, 5 g). The maximum sugar content was 61.48 $^{\circ}$Brix in 41.04 g of muskmelon paste content, $48.10\%$ of fructose ratio of sugar and 2.12 g of pectin content. The maximum value of softness was 2.71 g in 45.06 g of muskmelon paste content, $79.46\%$ of fructose ratio of sugar and 2.71 g of pectin addition. The minimum value of jelly strength was $0.04\;g{\cdot}cm$ in 47.80 g of muskmelon paste content, $63.0\%$ of fructose ratio of sugar and 1.99 g of pectin addition. The maximum value of organoleptic overall palatability was 5.89 in 55.65 g of muskmelon paste content, $73.19\%$ of fructose ratio of sugar and 2.42 g of pectin addition. The optimum conditions predicted for each corresponding physicochemical and organoleptic properties of muskmelon jam were 55.2 g(muskmelon paste content), $76.3\%$(fructose ratio of sugar) and 2.5 g(pectin addition).

Antioxidative and Nitrite Scavenging Activities of Polygonatum odoratum Root Extracts with Different Steaming and Roasting Conditions (둥굴레 근경의 증자 및 볶음조건에 따른 추출물의 항산화성 및 아질산염 소거능 변화)

  • Kim Kyung-Tae;Kim Jung-Ok;Lee Gee-Dong;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.12 no.2
    • /
    • pp.166-172
    • /
    • 2005
  • Response surface methodology (RSM) was applied to monitor the effects of steaming and roasting conditions of Polygonatum odoratum roots an total phenolics content, electron donating ability (EDA) and nitrite-scavenging ability (NSA) of the extract. In steaming and roasting processes based on the central composite design. with variations in steaming time $(60\~180\;min)$, roasting temperature $(110\~150\;min)$ and roasting time $(10\~50\;min)$, coefficients of determinations $(R^2)$ were 0.9356 (p<0.01) in total phenolics, 0.9578 (p<0.01) in EDA and 0.9436 (p<0.01) in NSA (pH 3.0). The maximum value of total phenolics was $2847.67\;mg\%$ at 135.59 min of steaming time, $143.84^{\circ}C$ of roasting temperature and 43.47 min of roasting time. The maximum value of EDA was $75.00\%$ in 108.98 min, $135.56^{\circ}C$ and 48.86 min. The maximum value of NSA (pH 3.0) was $87.38\%$ in 162.80 min, $143.88^{\circ}C$ and 31.97 min, respectively. Total phenolics content of the extract was influenced by heating conditions in the order of roasting temperature, steaming time and roasting time. While EDA and NSA were appreciably influenced by roasting time, followed by roasting temperature and steaming time.