• Title/Summary/Keyword: Binocular Disparity

Search Result 86, Processing Time 0.031 seconds

A Study on Efficient Encoding Method for Binocular Disparity Map (양안시차 벡터맵의 효율적인 부호화 방안 연구)

  • Bang, Min-Suk;Lee, Seoung-Joo;Jo, Jung-Sik;Lee, Dong-Hee;Kim, Sung-Hoon;Lee, Joo-Young;Choo, Hyun-Gon;Choi, Jin-Soo;Kim, Jin-Woong;Kang, Dong-Wook;Jung, Kyeong-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.34-36
    • /
    • 2012
  • 본 논문에서는 비대칭적 화질을 갖는 스테레오스코픽 영상에서 화질개선을 위해 사용되는 부가정보를 효율적으로 부호화하기위한 방안을 제안한다. 부가정보의 대부분은 좌영상과 우영상의 높은 상관도를 기반으로 하는 양안시차 벡터맵으로 구성되며, 이것을 부호화하기 위해 분포 특성을 분석하였고, 이에 맞는 엔트로피 부호화 방식인 지수 골롬 부호를 적용하였다. 또한, 양안시차 벡터맵의 공간적 데이터의 중복성을 없애기 위해 DPCM을 적용하여 부호화의 효율성을 높였다.

  • PDF

A Method for Reproducing Stereo Images to Adjust Screen Parallax on a 3D Display (3D 디스플레이에서의 화면 시차 제어를 위한 입체 영상재생성 기법)

  • Rhee, Seon-Min;Choi, Jong-Moo;Choi, Soo-Mi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.1-10
    • /
    • 2010
  • We present a method to reproduce in-between views from captured stereo images to control depth feeling that a user can perceive on a 3D display. The stereo images captured from a pair of cameras have a fixed viewpoint and a screen parallax which depend on the physical position and the distance between the cameras. In this paper, we produce stereo images of an intermediate viewpoint between two original cameras by a view interpolation on the input stereo images. Furthermore, the camera separation of the reproduced stereo images can be controlled by a linear interpolation coefficient used by the view interpolation. By using the proposed method, stereo images can be reproduced where the depth feeling and a three dimensional effect is suitable for the individual's eye separation or the characteristic of an application.

A Study on the Application of Stereoscopic Depth Value in VR HMD (VR HMD 기반의 스테레오스코픽 깊이 값 적용 연구)

  • Son, Ho-Jun;Kim, Jung-Ho;Lee, Seung-Hyun;Hamacher, Alaric;Kwon, Soon-Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.4
    • /
    • pp.31-40
    • /
    • 2016
  • Recently, technology of Virtual Reality(VR) based on HMD among various kinds of VR implemented products has received widespread attention. Major IT-related companies around the world participated in VR HMD research and development. Therefore, the possibility of the spread of VR HMD has been highly praised. Demands of VR HMD products using Smart Phone has been especially increased so that it is required to create a high quality of VR contents. The purpose of study in this paper is to apply the depth value of stereoscopic to VR HMD. To implement it, we analyzed VR HMD optical system and converted an experimental image to virtual depth caused by binocular disparity based on the result of calculating NPP(Native Pixel Parallax). We produced the image of stereoscopic applied with the value converted and applied to VR HMD. This study is expected to be utilized as a VR content creation field of quantitative data.

A Stereo Video Avatar for Supporting Visual Communication in a $CAVE^{TM}$-like System ($CAVE^{TM}$-like 시스템에서 시각 커뮤니케이션 지원을 위한 스테레오 비디오 아바타)

  • Rhee Seon-Min;Park Ji-Young;Kim Myoung-Hee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.6
    • /
    • pp.354-362
    • /
    • 2006
  • This paper suggests a method for generating high qualify stereo video avatar to support visual communication in a CAVE$^{TM}$-like system. In such a system because of frequent change of light projected onto screens around user, it is not easy to extract user silhouette robustly, which is an essential step to generate a video avatar. In this study, we use an infrared reflective image acquired by a grayscale camera with a longpass filter so that the change of visible light on a screen is blocked to extract robust user silhouette. In addition, using two color cameras positioned at a distance of a binocular disparity of human eyes, we acquire two stereo images of the user for fast generation and stereoscopic display of a high quality video avatar without 3D reconstruction. We also suggest a fitting algorithm of a silhouette mask on an infrared reflective image into an acquired color image to remove background. Generated stereo images of a video avatar are texture mapped into a plane in virtual world and can be displayed in stereoscopic using frame sequential stereo method. Suggested method have advantages that it generates high quality video avatar taster than 3D approach and it gives stereoscopic feeling to a user 2D based approach can not provide.

Geometric analysis and anti-aliasing filter for stereoscopic 3D image scaling (스테레오 3D 영상 스케일링에 대한 기하학적 분석 및 anti-aliasing 필터)

  • Kim, Wook-Joong;Hur, Nam-Ho;Kim, Jin-Woong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.638-649
    • /
    • 2009
  • Image resizing (or scaling) is one of the most essential issues for the success of visual service because image data has to be adapted to the variety of display features. For 2D imaging, the image scaling is generally accomplished by 2D image re-sampling (i.e., up-/down-sampling). However, when it comes to stereoscopic 3D images, 2D re-sampling methods are inadequate because additional consideration on the third dimension of depth is not incorporated. Practically, stereoscopic 3D image scaling is process with left/right images, not stereoscopic 3D image itself, because the left/right Images are only tangible data. In this paper, we analyze stereoscopic 3D image scaling from two aspects: geometrical deformation and frequency-domain aliasing. A number of 3D displays are available in the market and they have various screen dimensions. As we have more varieties of the displays, efficient stereoscopic 3D image scaling is becoming more emphasized. We present the recommendations for the 3D scaling from the geometric analysis and propose a disparity-adaptive filter for anti-aliasing which could occur during the image scaling process.

How is the inner contour of objects encoded in visual working memory: evidence from holes (물체 내부 윤곽선의 시각 작업기억 표상: 구멍이 있는 물체를 중심으로)

  • Kim, Sung-Ho
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.355-376
    • /
    • 2016
  • We used holes defined by color similarity (Experiment 1) and binocular disparity (Experiment 2) to study how the inner contour of an object (i.e., boundary of a hole in it) is encoded in visual working memory. Many studies in VWM have shown that an object's boundary properties can be integrated with its surface properties via their shared spatial location, yielding an object-based encoding benefit. However, encoding of the hole contours has rarely been tested. We presented objects (squares or circles) containing a bar under a change detection paradigm, and relevant features to be remembered were the color of objects and the orientation of bars (or holes). If the contour of a hole belongs to the surrounding object rather than to the hole itself, the object-based feature binding hypothesis predicts that the shape of it can be integrated with color of an outer object, via their shared spatial location. Thus, in the hole display, change detection performance was expected to better than in the conjunction display where orientation and color features to be remembered were assigned to different parts of a conjunction object, and comparable to that in a single bar display where both orientation and color were assigned into a single bar. However, the results revealed that performance in the hole display did not differ from that in the conjunction display. This suggests that the shape of holes is not automatically encoded together with the surface properties of the outer object via object-based feature binding, but encoded independently from the surrounding object.