• Title/Summary/Keyword: Binding energies

Search Result 156, Processing Time 0.022 seconds

Valence band of graphite oxide

  • Jeong, Hye-Gyeong;Kim, Gi-Jeong;Kim, Bong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.321-321
    • /
    • 2011
  • We have investigated the electronic structure of graphite oxide by photoelectron spectroscopy at the Pohang Accelerator Laboratory, Korea. The typical sp2 hybridization states found in graphite were also seen in graphite oxide. However, the ${\pi}$ state disappeared near the Fermi level because of bonding between the ${\pi}$ and oxygen-related states originating from graphite oxide, indicating electron transfer from graphite to oxygen and resulting in a downward shift of the highest occupied molecular orbital (HOMO) state to higher binding energies. The band gap opening increased to about 1.8 eV, and additional oxygen-related peaks were observed at 8.5 and 27 eV.

  • PDF

Ab Initio Study of Conformers of p-tert-Butylcalix[4]crown-6-ether Complexed with Alkyl Ammonium Cations

  • Choe, Jong-In;Jang, Suk-Kyu;Nanbu, Shinkoh
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.891-896
    • /
    • 2002
  • The structures and energies of p-tert-butylcalix[4]crown-6-ether(1) in various conformers and their alkyl ammonium complexes have been calculated by ab initio HF/6-31G quantum mechanics method. We have tried to obtain the relative affinity of partial-cone and 1,3-alternate conformers of 1 for alkyl ammonium guests by comparison with its cone-shaped analogue. We have also calculated the relative complexation efficiency of these host-guest complexes focusing on the binding sites of $crown-\sigma-enther$ moiety or benzene-rings pocket of the host molecule 1. These calculations revealed that the crown moiey has better complexation efficiency than upper rim part of calyx[4]arene that is in similar trend to the cone-shaped complexes.

DFT Study of p-tert-Butylcalix[5]crown-6-ether Complexed with Alkylammonium Ions

  • Oh, Dong-Suk;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.596-600
    • /
    • 2007
  • The structures and energies of p-tert-butylcalix[5]crown-6-ether (1) and its alkylammonium complexes have been calculated by DFT B3LYP/6-31G(d,p) method. We have studied the binding sites of these host-guest complexes focusing on the p-tert-butylcalix[5]arene pocket (endo) or the crown-6-ether moiety (exo) of 1. The smaller alkylammonium cations have the better complexation efficiency with p-tert-butylcalix[5]crown-6- ether than the bulkier alkylammonium ions. For the sec- and tert-butylammonium ions, the hydrogen-bond distances of the exo-complexes are shorter, therefore, stronger than the endo-cases. This DFT calculated result is in parallel with the trend of the experimental association constants of the branched butylammonium ions.

Molecular Bonding Force and Stiffness in Amine-Linked Single-Molecule Junctions Formed with Silver Electrodes

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.132-135
    • /
    • 2015
  • Bonding force and stiffness in amine-linked single-molecule junctions for Ag electrodes were measured using a home-built conducting atomic force microscope under ambient conditions at room temperature. For comparison, Au electrodes were used to measure the rupture force and stiffness of the molecular junctions. The traces of the force along with the conductance showed a characteristic saw-tooth pattern owing to the breaking of the metal atomic contacts or the metal-molecule- metal junctions. We found the rupture force and stiffness for Ag are smaller than those for Au electrodes. Furthermore, we observed that the force required to break the amine-Ag bond in the conjugated molecule, 1,4-benzenediamine, is smaller than in 1,4-butanediamine which is fully saturated. These results consist with the previous theoretical calculations for the binding energies of the nitrogen bonded to Ag or Au atoms.

Properties of Silicon for Photoluminescence

  • Baek, Dohyun
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.113-127
    • /
    • 2014
  • For more than five decades, silicon has dominated the semiconductor industry that supports memory devices, ICs, photovoltaic devices, etc. Photoluminescence (PL) is an attractive silicon characterization technique because it is contactless and provides information on bulk impurities, defects, surface states, optical properties, and doping concentration. It can provide high resolution spectra, generally with the sample at low temperature and room-temperature spectra. The photoluminescence properties of silicon at low temperature are reviewed and discussed in this study. In this paper, silicon bulk PL spectra are shown in multiple peak positions at low temperature. They correspond with various impurities such as In, Al, and Be, phonon interactions, for example, acoustical phonons and optical phonons, different exciton binding energies for boron and phosphorus, dislocation related PL emission peak lines, and oxygen related thermal donor PL emissions.

A Short Review on the Application of Combining Molecular Docking and Molecular Dynamics Simulations in Field of Drug Discovery

  • Kothandan, Gugan;Ganapathy, Jagadeesan
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.75-78
    • /
    • 2014
  • Computer-aided drug design uses computational chemistry to discover, enhance, or study drugs and related biologically active molecules. It is now proved to be effective in reducing costs and speeding up drug discovery. In this short review, we discussed on the importance of combining molecular docking and molecular dynamics simulation methodologies. We also reviewed the importance of protein flexibility, refinement of docked complexes using molecular dynamics and the use of free energy calculations for the calculation of accurate binding energies has been reviewed.

A Geometrical Structural Model of 2:1 Trioctahedral Clay Minerals (2:1 삼팔면체 점토광물의 기하학적 구조모델)

  • 유재영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.90-98
    • /
    • 1991
  • This study introduces a new structural model of 1M 2:1 trioctahedral clay minerals or, more generally, 2:1 trioctahedral phyllosilicates. The structural model requires only the chemical formulae of the clay minerals as an input and uses the regression relation (Radoslovich, 1962) to calculate the a- and b-dimensions of the phyllosilicates with the given chemical formulae. The atomic coordinates of the constituent atoms are geometrically calculated for C2/m space group under the assumption that the interatomic distances are constant. To determine the c-dimension, this study calculates the binding energies of 1M 2:1 trioctahedral phyllosilicates as a function of d(001) and find the minimum energy producing d(001). The structural model generates the cell dimensions, interaxial angles, interatomic distances, octahedral, tetrahedral and interlayer thickness, polyhedron deformation angles and atomic coordinates in the unit cell. The simulated structural parameters of phlogopite and annite are very close to the reported data by Hazen and Burnham (1973), suggesting that the structure simulation using only the chemical formule is successful, and thus, that the structural model of this study overcomes the difficulties in the previous models by other investigators.

  • PDF

Theoretical Study of the Effects of Cation on $_t$RNA

  • Koh, Kwang-Oh;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.2
    • /
    • pp.66-71
    • /
    • 1981
  • The effects of cation on tRNA have been theoretically investigated using the semiempirical potential energy functions. The binding of $Mg^{2+}$ to the model compound and the hydration scheme of the anticodon loop have been determined, and their stabilization energies produced by the introduction of magnesium pentahydrate and water molecules in the first hydration shell were calculated. The results indicate that magnesium pentahydrate is important for decreasing the flexibility of the anticodon loop and satisfying the large Y37 stereochemically during the protein synthesis. The effects of $Mg^{2+}$ on the hydration scheme were also investigated.

An XPS Study of YBaCuO Compounds

  • Myung-Mo Sung;Yunsoo Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 1990
  • X-ray photoelectron spectra have been obtained and comparisons have been made for 1-2-3 and 2-1-1 phases of YBaCuO compounds. The photoelectron binding energies of all the constituent elements are consistently larger for the 2-1-1 phase than for the 1-2-3 phase. The peak intensities reflect different stoichiometries of the two phases. For the superconducting 1-2-3 phase, its degradation in air and interaction with water and carbon dioxide were examined by taking core level spectra of all the elements. It appears that yttrium is the most affected by exposure to air, since it undergoes a rapid change to carbonate when water and subsequently carbon dioxide are introduced.

A Theoretical Study of Electronic Structure and Properties of the Neutral and Multiply Charged $C_{60}$

  • 손만식;백유현;이종광;성용길
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1015-1019
    • /
    • 1995
  • The electronic structures and properties of the neutral and multiply charged C60n ions (n=2+ to 6-) with spin states have been investigated by semi-empirical MNDO calculations. In the ground state, C601- has the lowest total energy and the highest binding energy. The neutral C60 ion is supposed to have a high ionization potential and a high electron affinity. The HOMO and LUMO positions are lower in the cationic C60 than in the anionic C60. The LUMO energy becomes increasingly positive from C601- to C606- and the HOMO energy becomes increasingly negative from C602+ to C60. The HOMO-LUMO gap of the neutral C60 ion is higher than that of the multiply charged C60 ions. From the HOMO-LUMO gap, it seems reasonable to expect that electrons of the multiply charged C60 ions will be more polarizable than those of the neutral C60 ion. The HOMO and LUMO energies increase as the negative charge increases.