• Title/Summary/Keyword: Binding Power

Search Result 268, Processing Time 0.027 seconds

Physicochemical Properties of Rice Starch by Amylose Content (아밀로오스 함량별 쌀전분의 이화학적 특성)

  • Lee, Sang-Hyo;Han, Ouk;Lee, Hyun-Yu;Kim, Sung-Soo;Chung, Dong-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.766-771
    • /
    • 1989
  • physicochemical properties of rice starch isolated from eight varieties were examined to evaluate the rice processing suitability The amylose contents of rice starch were varied with 16.7-29.7%, and IR 30, Godael, Aguja and Lengkwang varieties showed higher amylose content than the other varieties. The water binding capacity and blue value were in the range of 87.0 103.0 and 0.178-0.305, respectively. As the amylose content increased, the amylogram pasting temperature and the break down ratio increased, while the peak viscosity did not show any significant difference. The transmittance of 0.1% starch suspension slowly increased at $50^{\circ}C$ in the low-amylose content rice group, and rapidly increased at $65^{\circ}C$ in the high-amylose content rice group, but there were no differences above $75^{\circ}C$ among varieties. Also the low-amylose rice starch showed higher values in the swelling power and solubility. The hardness of the 30% rice starch gels was low in low-amylose one. During storage at $20^{\circ}C$ for 14 days, the increment of hardness was more slow in high-amylose one. The retrogradation velocity constant of rice starch gel by Avrami equation was the highest as 0.219 in Aguja variety.

  • PDF

Change of Quality and Physicochemical Characteristics of Mung-bean Flours with Germination and Roasting Condition (발아 및 볶음조건별 녹두가루의 품질 및 이화학 특성 변화)

  • Kim, Hyun-Joo;Lee, Ji Hae;Lee, Byong Won;Lee, Yu Young;Lee, Byoung Kyu;Woo, Koan Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.1
    • /
    • pp.149-159
    • /
    • 2018
  • The change of quality and physicochemical characteristics of mung-bean flours after germination and roasting treatment were evaluated. The moisture content of the roasted mung-bean flours decreased significantly according to the roasting temperatures and times, and the crude ash, protein and fat contents increased. The lightness of the roasted mung-bean flours significantly decreased, and the redness and yellowness increased. The water binding capacity of the roasted mung-bean flours without and with germination were 151.71 and 192.77% at $240^{\circ}C$ for 20 min, respectively. The water solubility index and swelling power decreased with an increase in roasting temperatures and times. The phenolic compounds and radical scavenging activity of the roasted mung-bean flours increased with an increase in the roasting temperatures and times. The total polyphenol contents of the roasted mung-bean flours without and with germination were 4.81~7.71 and 4.22~5.63 mg GAE/g, and the total flavonoid contents were 2.46~3.05 and 2.45~2.87 mg CE/g, respectively. The DPPH radical scavenging activity of the roasted mung-bean flours, without and with germination, were 106.83~376.08 and 174.41~346.70 mg TE/100 g, and the ABTS radical scavenging activity was 251.67~534.31 and 274.39~430.02 mg TE/100 g, respectively. As a result, it is necessary to set quality standards for each application considering the quality and antioxidant properties of the roasted mung-bean flours.

Physicochemical Properties of Oxidized Waxy Maize Starches with Sodium Hypochlorite (찰옥수수 산화전분의 이화학적 특성)

  • Chung, Man-Gon;Jeon, Young-Seung;Lee, Sur-Koo;Park, Jong-Moon;Lim, Bun-Sam
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.42-48
    • /
    • 1998
  • Physicochemical properties of waxy maize starch and oxidized waxy maize starch with sodium hypochlorite $(0{\sim}60\;mg\;CL_2/g\;starch,40^{\circ}C,\;pH\;10,\;3.0\;hr)$ were studied. As sodium hypochlorite concentration was increased, the content of crude lipid and crude protein of the oxidized starch were decreased. And crude protein content and whiteness was considered to show negative regression. However, the crude ash content of the oxidized starch increased significantly with oxidation and bore a positive regression to the chlorine content. There was a progressive increase in the carboxyl content with increasing oxidant level. After pasting in hot water and cooling, viscosity of the oxidized starches were drastically lower than that of native starch . As carboxyl contents of the oxidized starch increased, the solubility and swelling power was increased. When waxy maize starch treated with 0, 1.5, 3.0 and 6.0% sodium hypochlorite, temperature of initial gelatinization of oxidized starch was shown to 65, 65, 60 and $50^{\circ}C$, respectively. The oxidized waxy maize starches also form clearer pastes. Water binding capacity of the oxidized starch decreased as the degree of carboxyl group substitution increased. Waxy maize starch has polygonal and some round granules which range from about 3.7 to $20\;{\mu}m$ in diameter. Surface appearance of the waxy maize starch became rough when oxidized with sodium hypochlorite. When homogenate of the oxidized waxy maize starch solution and corn germ oil was stored under room temperature for 24 hours, the emulsion stability was considered to depend on starch concentration and degree of substitution.

  • PDF

Some Physicochemical Properties of Potato Yam(D. bulbifera) Starches (Potato Yam(Dioscorea bulbifera) 전분의 이화학적 특성)

  • Seog, Ho-Moon;Park, Yong-Kon;Nam, Young-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.753-761
    • /
    • 1990
  • The physicochemical properties of starches from aerial and subterranean tuber of yam were compared with those of rice and sweet potato. Aerial tuber yam contained higher level of amylose than others, whereas water binding capacity, swelling power and solubility was highest in subterranean tuber yam starch. Brabender amylograms of 5% starch suspensions indicated that the initial pasting temperature of yam starches were slightly higher than that of rice and sweet potato starches, the maximum viscosities of starches from subterranean and aerial tuber yam were 860 and 590 B.U., respectively. Yam starches were more difficult to hydrolyze by ${\alpha}-amylase$ than rice and sweet potato starches. ${\beta}-Amylolysis\;limit$ for yam starches and their amylose and amylopectin were higher than rice and sweet potato starches. The elution profiles of starches on Sepharose CL-2B were different from each other but they were similar between yam starches. Incomplete debranched fractions in the aerial tuber yam amylopectin was particularly higher than other samples. The weight ratio of short chains to long chains for debranched amylopectins was the lowest in aerial tuber yam.

  • PDF

Impact of Milling Method on Quality Parameters of Waxy Sorghum Flour (제분방법에 따른 찰수수 가루의 품질 특성)

  • Ryu, Bog-Mi;Kim, Chang-Soon
    • Korean journal of food and cookery science
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • The objective of this research was to investigate physicochemical properties of waxy sorghum flours by different milling methods (pin mill and ultra fine mill). Four different sorghum flours were used for the experiments ; PWS (pin milled whole sorghum flour), PS (pin milled sorghum flour without bran), UFWS (ultra fine milled whole sorghum flour), UFS (ultra fine milled sorghum flour without bran). The contents of crude ash and total dietary fiber were the highest in PWS. Amylose content of pin milled sorghum flour was higher than that of ultra fine milled flour. The mean particle size of pin milled flours was six times lager than ultra fine milled flours. The L values of UFS and UFWS were higher than those of PS and PWS, whereas a and b values were higher in PWS. The water binding capacity was highest in UFWS, and solubility was higher in PS and UFS. Swelling power of flours was highest in UFS. The damaged starch content was higher in PS and UFS, which means damaged starch of sorghum flours significantly affected by polishing than milling method. The pasting properties were higher in the pin milled flours. Initial pasting temperature of pin milled flour was ranging from 70.5 to $73.1^{\circ}C$, which are higher than ultra fine milled flour ($68.6^{\circ}C$). The contents of total polyphenol were higher in PWS and UFWS than those of PS and UFS, there was no difference between the two milling methods. The results of this study indicate that physicochemical properties of sorghum flour were affected by milling methods as well as bran.

Changes in Physicochemical Properties of Rice Starch from Rice Stored at Different Conditions (저장조건에 따른 쌀전분의 이화학적 성질 변화)

  • Ko, Yong-Duck;Choi, Ok-Ja;Park, Seok-Kyu;Ha, Hee-Suk;Sung, Nack-Kie
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.306-312
    • /
    • 1995
  • In order to know properties in rice starch during storage of rice, rice starch from stored rice(stored at $5^{\circ}C$, R.H. 65% and $30^{\circ}C$, R.H. 85%, for 16 weeks) used in this experiment. Water binding capacity of rice starch increased for 8 weeks, and then it decreased. As the storage period took longer, swelling power and solubility, optical transmittance, blue value, total amylose content and soluble amylose content decreased. For the same periods, changes in rice starch from stored rice$(30^{\circ}C$, R.H. 85%) were made more than those in rice starch at $5^{\circ}C$, R.H. 65%. The granule shape of rice starch, irrespective of storage periods and conditions, didn't make a significant difference. The relative crystallinity of the rice starch by X-ray diffraction didn't distinctly changed till the second week. But, at the fourth week, that by X-ray diffraction significantly decreased, and then slightly decreased. As the storage period took longer, gelatinization temperature, melting temperature and melting enthalpy measured by DSC got higher, but gelatinization enthalpy got lower. For the same storage period, gelatinization temperature, melting temperature, gelatinization enthalpy and melting enthalpy of rice starch stored at $30^{\circ}C$, R.H. 85% made changes more than those of rice starch stored at $5^{\circ}C$, R.H. 65% did.

  • PDF

Physicochemical Properties of Rice Affected by Steeping Conditions (수침이 멥쌀의 이화학적 성질에 미치는 영향)

  • Kim, Sung-Kon;Bang, Jung-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1026-1032
    • /
    • 1996
  • The effects of steeping temperature $(7^{\circ},\;15^{\circ},\;20^{\circ}\;and\;30^{\circ}C)$ and steeping time $(2{\sim}14\;hr)$ on the physicochemical properties of milled rice (variety; Chucheongbyeo) were investigated. The pH of the steep water decreased as the steeping time increased, which was more pronounced at higher steeping temperature. The solid loss was about 4.0% during steeping. The contents of protein, fat and ash decreased during steeping, which was greater at elevated temperature. The lightness of rice was slightly increased, and the yellowness was decreased upon steeping. The water-binding capacity of rice was increased during steeping at above $15^{\circ}C$. The slight increase of the swelling power of rice at $80^{\circ}C$ was observed upon steeping. The maximum wavelengh for the rice flour-iodine complex was moved to a higher wavelengh, but X-ray diffraction patterns remained constant regardless the steeping conditions. The pasting properties of rice flour (10%) by amylograph indicated that the peak viscosity increased as the steeping time was increased at all steeping temperatures. The steeping resulted in the greater breakdown and the 1ower setback. The log peak viscosity showed a linear relationship with the steeping time. The activation energy and $Q_{10}$ value for the visciosity increase rate was 2, 320 cal/mole and 1.14, respectively.

  • PDF

Effects of Enzyme Treatment in Steeping Process on Physicochemical Properties of Wet-Milled Rice Flour (효소 전처리에 의한 습식제분 쌀가루의 이화학적 특성)

  • Kim, Rae-Young;Park, Jae-Hee;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1300-1306
    • /
    • 2011
  • This study investigated the physicochemical characteristics of wet-milled rice flour treated with pectinase and cellulase in a steeping process. Enzyme treatments were used as follows: pectinase 0.05%, cellulase 0.05%, and mixed enzyme treatments 0.05~0.2%. For particle distribution, rice flour E-treated with mixed enzymes (pectinase 0.05% and cellulase 0.05%) was the finest at 48.3% particle distribution less than $53\;{\mu}m$. Protein contents and damaged starch were reduced by enzyme treatments. Damaged starch was the lowest (12.1%) in rice flour E compared with non-enzyme treatment (18.1%). Amylose content, water binding capacity, solubility, and swelling power all increased upon enzyme treatments, and their effects increased upon mixed enzyme treatment. For gelatinization characteristics of RVA, peak viscosity, final viscosity, breakdown, and total setback viscosity increased in rice flours treated with mixed enzymes. Especially, in steeping method with mixed enzyme treatment, pectinase 0.05% and cellulase 0.05% treatment was suitable for minimizing damaged starch and high fine particle distribution of rice flours compared with single enzyme treatment.

Quality Characteristics of Noodle Supplemented with Skate (Raja kenojei) Skin and Bone Powder (홍어 분말 첨가에 따른 국수의 품질 특성)

  • Kim, Kyung-Hee;Park, Bock-Hee;Kim, Dong-Han;Cho, Hee-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.3
    • /
    • pp.353-360
    • /
    • 2008
  • This study evaluated the quality characteristics of dried noodles made of wheat flour supplemented with different concentrations of skate powder. Cooking quality, mechanical texture properties, gelatinization temperature and viscosity were measured, after which sensory evaluation was performed with prepared noodles. Water binding capacity, solubility and swelling power of the composite skate powder and wheat flours were higher than those of pure wheat flour. Gelatinization temperature of the composite skate powder and wheat flours increased, while initial, interim, and maximum-viscosity at $95^{\circ}C$, decreased, with increasing skate powder content. In relation to color values, increasing skate flour content led to decrease in L and b values and increase in a value. For the textural characteristics, the addition of skate powder increased hardness, springiness, chewiness and adhesiveness. Overall, noodles made with 3% skate powder were preferred compared to other samples.

  • PDF

Cranberry Juice to Reduce Bladder Biofilms and Infection in Geriatric and Spinal Cord Injured Patients with Dysfunctional Bladders

  • Reid, Gregor;Potter, Patrick;Lam, Dominique;Warren, Diny;Borrie, Michael;Hayes, Keith
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.24-28
    • /
    • 2003
  • There is evidence to suggest that cranberry juice supplements improve the health of the urinary tract by inhibiting the binding of fimbriated uropathogenic E. coli to the bladder mucosa. In patients with neurogenic bladders, urinary tract infections (UTI) are particularly common and often poorly managed by antibiotic treatment. A double-blind, randomized, placebo-controlled trial was undertaken on 29 geriatric and spinal cord injured patients with dysfunctional bladders. They received three times daily at mealtimes a 4 oz bottle of cranberry juice (Ocean Spray Cranberries, USA) or a specially prepared synthetic placebo drink. Two episodes of UTI arose in week one of cranberry intake and none thereafter, compared to four episodes of UTI in 4 placebo patients in weeks four, six and 10. Mean bacterial adhesion counts on bladder cells of the patients rose during the first month of treatment in 71 % of the placebo patients compared to only 31 % of cranberry patients (p < 0.001). The difference persisted to some extent for the second and third months. Bacterial adhesion levels correlated with culture findings (higher adhesion and higher viable counts in urine) (p < 0.001), positive leukocyte nitrite tests (136$\pm$131 bacteria per cell versus 52$\pm$86 in negative tests) (p < 0.001), and higher white blood cell counts (> 10) per high power field (126$\pm$125 versus 48$\pm$85 bacteria per cell) (p<0.001). E. coli was the most frequently isolated organism (40% samples) followed by K. pneumoniae (17%) and a number of other uropathogens. Group B Streptococci, and coagulase negative Staphylococcus were recovered from urine in 4 samples but were not associated with any red blood cell presence. The daily intake of cranberry juice, in amounts which are not detrimental to long term compliance, appeared to have a role in reducing the risk of bladder colonization and infection in a highly susceptible patient population.