• Title/Summary/Keyword: Binding Potential

Search Result 931, Processing Time 0.028 seconds

Subpopulations of miniature pig mesenchymal stromal cells with different differentiation potentials differ in the expression of octamer-binding transcription factor 4 and sex determining region Y-box 2

  • Jeon, Ryounghoon;Park, Sungjo;Lee, Sung-Lim;Rho, Gyu-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.515-524
    • /
    • 2020
  • Objective: Human mesenchymal stromal cells (MSCs) exhibit variable differentiation potential and can be divided accordingly into distinct subpopulations whose ratios vary with donor age. However, it is unknown whether the same is true in pigs. This study investigated MSC subpopulations in miniature pig and compared their characteristics in young (2 to 3 months) and adult (27 to 35 months) pigs. Methods: Osteogenic, chondrogenic, and adipogenic capacity of isolated MSCs was evaluated by von Kossa, Alcian blue, and oil red O staining, respectively. Cell surface antigen expression was determined by flow cytometry. Proliferative capacity was assessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Expression of marker genes was detected by quantitative real-time polymerase chain reaction. Results: Porcine MSCs comprised cells with trilineage and bilineage differentiation potential (tMSCs and bMSCs, respectively) and non-differentiating stromal cells (NDSCs). The tMSC and bMSC fractions were smaller in adult than in young pigs (63.0% vs 71.2% and 11.6% vs 24.0%, respectively, p<0.05); NDSCs showed the opposite trend (25.4% vs 4.8%; p<0.05). Subpopulations showed no differences in morphology, cell surface antigen expression, or proliferative capacity, but octamer-binding transcription factor 4 (OCT4) expression was higher in tMSCs than in bMSCs and NDSCs (p<0.05), whereas sex determining region Y-box 2 (SOX2) expression was higher in tMSCs and bMSCs than in NDSCs (p<0.05). Aging had no effect on these trends. Conclusion: Porcine MSCs comprise distinct subpopulations that differ in their differentiation potential and OCT4 and SOX2 expression. Aging does not affect the characteristics of each subpopulation but alters their ratios.

Druggability for COVID-19: in silico discovery of potential drug compounds against nucleocapsid (N) protein of SARS-CoV-2

  • Ray, Manisha;Sarkar, Saurav;Rath, Surya Narayan
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.43.1-43.13
    • /
    • 2020
  • The coronavirus disease 2019 is a contagious disease and had caused havoc throughout the world by creating widespread mortality and morbidity. The unavailability of vaccines and proper antiviral drugs encourages the researchers to identify potential antiviral drugs to be used against the virus. The presence of RNA binding domain in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be a potential drug target, which serves multiple critical functions during the viral life cycle, especially the viral replication. Since vaccine development might take some time, the identification of a drug compound targeting viral replication might offer a solution for treatment. The study analyzed the phylogenetic relationship of N protein sequence divergence with other 49 coronavirus species and also identified the conserved regions according to protein families through conserved domain search. Good structural binding affinities of a few natural and/or synthetic phytocompounds or drugs against N protein were determined using the molecular docking approaches. The analyzed compounds presented the higher numbers of hydrogen bonds of selected chemicals supporting the drug-ability of these compounds. Among them, the established antiviral drug glycyrrhizic acid and the phytochemical theaflavin can be considered as possible drug compounds against target N protein of SARS-CoV-2 as they showed lower binding affinities. The findings of this study might lead to the development of a drug for the SARS-CoV-2 mediated disease and offer solution to treatment of SARS-CoV-2 infection.

Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach

  • Anugya Gupta;Rajesh Haldhar;Vipul Agarwal;Dharmendra Singh Rajput;Kyung-Soo Chun;Sang Beom Han;Vinit Raj;Sangkil Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.390-398
    • /
    • 2024
  • FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID-3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.

Active Phytochemicals of Indian Spices Target Leading Proteins Involved in Breast Cancer: An in Silico Study

  • Ashok Kumar Krishnakumar;Jayanthi Malaiyandi;Pavatharani Muralidharan;Arvind Rehalia;Anami Ahuja;Vidhya Duraisamy;Usha Agrawal;Anjani Kumar Singh;Himanshu Narayan, Singh;Vishnu Swarup
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.151-159
    • /
    • 2024
  • Indian spices are well known for their numerous health benefits, flavour, taste, and colour. Recent Advancements in chemical technology have led to better extraction and identification of bioactive molecules (phytochemicals) from spices. The therapeutic effects of spices against diabetes, cardiac problems, and various cancers has been well established. The present in silico study aims to investigate the binding affinity of 29 phytochemicals from 11 Indian spices with two prominent proteins, BCL3 and CXCL10 involved in invasiveness and bone metastasis of breast cancer. The three-dimensional structures of 29 phytochemicals were extracted from PubChem database. Protein Data Bank was used to retrieve the 3D structures of BCL3 and CXCL10 proteins. The drug-likeness and other properties of compounds were analysed by ADME and Lipinski rule of five (RO5). All computational simulations were carried out using Autodock 4.0 on Windows platform. The proteins were set to be rigid and compounds were kept free to rotate. In-silico study demonstrated a strong complex formation (positive binding constants and negative binding energy ΔG) between all phytochemicals and target proteins. However, piperine and sesamolin demonstrated high binding constants with BCL3 (50.681 × 103 mol-1, 137.76 × 103 mol-1) and CXCL10 (98.71 × 103 mol-1, 861.7 × 103 mol-1), respectively. The potential of these two phytochemicals as a drug candidate was highlighted by their binding energy of -6.5 kcal mol-1, -7.1 kcal mol-1 with BCL3 and -6.9 kcal mol-1, -8.2 kcal mol-1 with CXCL10, respectively coupled with their favourable drug likeliness and pharmacokinetics properties. These findings underscore the potential of piperine and sesamolin as drug candidates for inhibiting invasiveness and regulating breast cancer metastasis. However, further validation through in vitro and in vivo studies is necessary to confirm the in silico results and evaluate their clinical potential.

A Screening Method for Src Homology 3 Domain Binding Blockers Based on Ras Signaling Pathway

  • Ko, Woo-Suk;Yoon, Sun-Young;Kim, Jae-Won;Lee, Choong-Eun;Han, Mi-Young
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.303-307
    • /
    • 1997
  • Grb2, which is composed of a Src homology 2 (SH2) domain and two Src homology 3 (SH3) domains, is known to serve as an adaptor protein in signaling for Ras activation. Thus, a blocker of the Grb2 interactions with other proteins can be a potential candidate for an anticancer drug. In this study, we have developed a high throughput screening method for SH3 domain binding ligands and blockers. Firstly, we made and purified the glutathione S-transferase (GST)-fusion proteins with the Grb2 SH2 and SH3 domains, and the entire Grb2. This method measures the binding of a biotin-labeled oligopeptide, derived from a Grb2/SH3 binding motif in the hSos, to the GST-fusion proteins, which are precoated as glutathione S-transferase fusion protein on a solid phase. When $1\;{\mu}g$ of each fusion protein was used to coat the wells, both N- and C- terminal SH3 the domains as well as the whole of Grb2 were able to interact with the biotin-conjugated ligand peptide, while the SH2 domain and GST alone showed no binding affinity. Although N- and C- terminal SH3 domains showed an increase of binding to the ligand peptide in proportion to the amount of peptide, the GST fusion protein with Grb2 demonstrated much higher binding affinity. GST-Grb2 coating on the solid phase showed a saturation curve; 66 and 84% of the maximal binding was observed at 100 and 300 ng/$100\;{\mu}l$, respectively. This binding assay system was peptide sequence-specific, showing a dose-dependent inhibition with the unlabeled peptide of SH3 binding motif. Several other peptides, such as SH2 domain binding motifs and PTB domain binding motif, were ineffective to inhibit the binding to the biotin-conjugated ligand peptide. These results suggest that our method may be useful to screen for new anticancer drug candidates which can block the signaling pathways mediated by SH3 domain binding.

  • PDF

Identification of a Bacteria-Specific Binding Protein from the Sequenced Bacterial Genome

  • Kong, Minsuk;Ryu, Sangryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • Novel and specific recognition elements are of central importance in the development of a pathogen detection method. Here, we describe a simple method for identifying the cell-wall binding domain (CBD) from a sequenced bacterial genome employing homology search for phage lysin genes. A putative CBD (CPF369_CBD) was identified from a genome of Clostridium perfringens type strain ATCC 13124, and its function was studied with the CBD-GFP fusion protein recombinantly expressed in Escherichia coli. Fluorescence microscopy showed the specific binding of the fusion protein to C. perfringens cells, which demonstrates the potential of this method for the identification of novel bioprobes for specific detection of pathogenic bacteria.

Molecular Docking Study of Urotension-2 Receptor (UTS2R)

  • Sathya., B
    • Journal of Integrative Natural Science
    • /
    • v.10 no.2
    • /
    • pp.105-109
    • /
    • 2017
  • Urotensin-2 receptor (UTS2R) is the most potent vasoconstrictor and plays a major role in the pathophysiology of various cardiovascular diseases and becomes a potential target for human pharmacotherapy. Hence, we have performed molecular docking of six antagonists with different inhibitory activity against UTS2R into its binding site. The binding mode of these antagonists was obtained using Surflex dock program interfaced in Sybyl-X2.0. The residues such as GLN278, THR304, TYR305, THR300, LEU299, CYS302, ASP47, TYR100 and THR304 are found in interaction between UTS2R and its antagonists. This study could be useful for identifying and analyzing the important residues involved in binding site of UTS2R receptor.

Synthesis and DNA-binding Properties of Trehalose-tethered Monomeric and Dimeric Berberines

  • Wang, Yong-Min;Zhou, Chun-Qiong;Chen, Jin-Xiang;Chen, Wen-Hua
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.749-752
    • /
    • 2013
  • Trehalose-tethered monomeric and dimeric berberines were synthesized in 50% and 30% from the reaction of berberrubine with 6-tosyl-${\alpha}$,${\alpha}^{\prime}$-trehalose and 6,6'-ditosyl-${\alpha}$,${\alpha}^{\prime}$-trehalose, respectively, and fully characterized by MS (HR and ESI) and NMR ($^1H$, $^{13}C$, COSY and HSQC). Spectrophotometric and spectrofluorimetric titrations indicated that compared with berberine, trehalose-tethered monomeric berberine had comparable DNA-binding affinity toward calf-thymus DNA, whereas trehalose-spaced dimeric berberine exhibited higher DNA-binding affinity. The potential application of these conjugates is also briefly discussed.

RNA-Binding Proteins in Amyotrophic Lateral Sclerosis

  • Zhao, Melody;Kim, Jihye Rachel;van Bruggen, Rebekah;Park, Jeehye
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.818-829
    • /
    • 2018
  • Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying amyotrophic lateral sclerosis (ALS), which may in turn pinpoint potential therapeutic targets for treatment. The ALS research field has evolved with recent discoveries of numerous genetic mutations in ALS patients, many of which are in genes encoding RNA binding proteins (RBPs), including TDP-43, FUS, ATXN2, TAF15, EWSR1, hnRNPA1, hnRNPA2/B1, MATR3 and TIA1. Accumulating evidence from studies on these ALS-linked RBPs suggests that dysregulation of RNA metabolism, cytoplasmic mislocalization of RBPs, dysfunction in stress granule dynamics of RBPs and increased propensity of mutant RBPs to aggregate may lead to ALS pathogenesis. Here, we review current knowledge of the biological function of these RBPs and the contributions of ALS-linked mutations to disease pathogenesis.

Theoretical Study of Isotope and Cation Binding Effects on the Hydration of BDNA

  • Kang, Young-Kee;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.1
    • /
    • pp.24-28
    • /
    • 1981
  • Theoretical studies of the sodium cation binding and the isotope hydration effects on the static model compound B-DNA have been qualitatively elucidated by using empirical potential energy functions. In the first place, the sodium cations bound to phosphate anions and their hydration scheme have been optimized and have given a reasonable agreement with other theoretical results and experimental studies. In the second stage, the isotope effect on the hydration through the substitution of $D_2O\;for\;H_2O$ has been carried out by the same procedure. The stabilization of B-DNA has been explained and compared in terms of the sodium cation binding to phosphate anions and its hydration in both cases of $H_2O\;and\;D_2O$.