• 제목/요약/키워드: Binding Mechanism

검색결과 985건 처리시간 0.026초

Acid-Base Equilibria and Related Properites of Chitosan

  • Joon-Woo Park;Kyung-Hee Choi;Kwang-hee Koh Park
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권2호
    • /
    • pp.68-72
    • /
    • 1983
  • The $pK_{a}$ of $-NH_{3}^{+}$ group of chitosan in water was 6.2, while that of D-glucosamine-HCl, monomer of chitosan, was found to be 7.8. The difference of $pK_{a}$ values between chitosan and D-glucosamine was attributed to the strong electrostatic interaction between $-NH_{3}^{+}$ groups in chitosan. The apparent binding constant of $Cu^{2+}$ to D-glucosamine was estimated to be $1{\times}10^{4}$. For chitosan, no significant binding of $Cu^{2+}$ to the polymer was observed when pH < 5, but strong cooperative binding was observed near pH 5.1. The mechanism of such cooperativity was proposcd. Chitosan in solution exhibited typical polyelectrolytic behaviors: viscosity increases with increased amount of charged group, and decreases with addition of salt. The concentration dependence of viscosity was measured, and the Huggins parameters and intrinsic viscosity were calculated at various ionic strength. The results were interpreted in terms of molecular properties of the chitosan molecule.

Effects of Pertussis Toxin on Macrophage Activation

  • Lim, Suck-Ihn;An, Nyeon-Hyoung
    • Archives of Pharmacal Research
    • /
    • 제15권2호
    • /
    • pp.146-151
    • /
    • 1992
  • The aim of this study was to evaluate capability of pertussis toxin (PT) to active mouse macrophages. The investigations were undertaken to determine whether the role played by this toxin required the A-protomer of the toxin to ADP-ribosylate a guanine nucleotide binding protein (a class I activity) or was dependent on the binding of B-oligomer of the toxin to the surface of target cells (a Class II activity). The results of these experiments have established that the mechanism of macrophage activation with PT seems to be dependent upon a Class II activity of the toxin.

  • PDF

Effects of Ginseng Total Saponin on Morphine-induced Alterations in Brain Opioid and Dopamine Receptors

  • Kim, A.-Y.;Lee, S.-Y.;Kim, Y.-R.;G.-S. Yoo;D.-K. Lim;K. W. Oh;Kim, K.-M.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.100-100
    • /
    • 1995
  • Several behavioral studies have suggested that ginseng total saponin (GTS) antagonizes morphine actions. Based on these observations, we conducted biochemical studies to elucidate the cellular mechanism of GTS actions. morphine hydrochloride (10mg/kg, sc) and/or on (400mg/kg, oral ) were administered to mice for 14 consecutive days. Ligand binding studies were conducted from striatal membranes. For opioid receptors, morphine increased the affinity but decreased the maximal binding sites for $^3$H naloxone. GTS partially recovered it. In case of dopamine receptors, morphine increased affinity and maximal binding sites for 3H spiperone. and GTS partially blocked it. These results suggest that morphine affects cellular events by modulating opioid receptors and that opioid receptors interact with dopamine receptors to change the mental status. GTS could be helpful for the treatment of morphine- induced mental disorders.

  • PDF

Piperine의 진통작용 기전에 관한 연구 (A Study on the Mechanism of Analgesic Action of Piperine)

  • 은재순
    • 약학회지
    • /
    • 제30권4호
    • /
    • pp.169-173
    • /
    • 1986
  • It was carried out to detect the analgesic action of piperine by hot-plate method and to elucidate its mechanism in rats. Piperine (30mg/kg i.p.) produced profound analgesia, which was blocked by naloxone (10mg/kg). Chronic intraperitoneal administration of piperine significantly increased the contents of $\beta$-endorphin in rat midbrain. In the chronic piperine-treated groups, significant decreases of maximum opiate binding were observed. However, Kd value in these groups were not changed.

  • PDF

Identification of Oligosaccharides in Human Milk Bound onto the Toxin A Carbohydrate Binding Site of Clostridium difficile

  • Nguyen, Thi Thanh Hanh;Kim, Jong Woon;Park, Jun-Seong;Hwang, Kyeong Hwan;Jang, Tae-Su;Kim, Chun-Hyung;Kim, Doman
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.659-665
    • /
    • 2016
  • The oligosaccharides in human milk constitute a major innate immunological mechanism by which breastfed infants gain protection against infectious diarrhea. Clostridium difficile is the most important cause of nosocomial diarrhea, and the C-terminus of toxin A with its carbohydrate binding site, TcdA-f2, demonstrates specific abolishment of cytotoxicity and receptor binding activity upon diethylpyrocarbonate modification of the histidine residues in TcdA. TcdA-f2 was cloned and expressed in E. coli BL21 (DE3). A human milk oligosaccharide (HMO) mixture displayed binding with TcdA-f2 at 38.2 respond units (RU) at the concentration of 20 μg/ml, whereas the eight purified HMOs showed binding with the carbohydrate binding site of TcdA-f2 at 3.3 to 14 RU depending on their structures via a surface plasma resonance biosensor. Among them, Lacto-N-fucopentaose V (LNFPV) and Lacto-N-neohexaose (LNnH) demonstrated tight binding to TcdA-f2 with docking energy of −9.48 kcal/mol and −12.81 kcal/mol, respectively. It displayed numerous hydrogen bonding and hydrophobic interactions with amino acid residues of TcdA-f2.

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

Purification and Characterization of PC-Like Cadmium-Binding Peptide from Root of Rumex crispus

  • Chang, Ju-Youn;Lee, In-Sook;Park, Jin-Sung;Chang, Yoon-Young;Bae, Bum-Han
    • The Korean Journal of Ecology
    • /
    • 제26권5호
    • /
    • pp.263-266
    • /
    • 2003
  • This research investigated the process of removing cadmium and tested the detoxification mechanism of the cadmium-binding peptide (Cd-BP) from Rumex crispus. Phytochelatin-like cadmium-binding peptide (PC-Cd-BP) of Rumex crispus was purified and identified. Rumex crispus was exposed to 4.3 mg Cd/L for seven days. Heat-treated supernatant fraction taken by root tissues showed traces of PC-Cd-BP An analysis of the material through Gel-filteration chromatography on the Sephadex G-75 column showed two symmetrical Cd-BP peaks. The major peak with the smaller molecular weight was further purified by $C_{18}$ reverse-phase HPLC to produce apparent homogeneity. The amino acid composition of Cd-BP from Rumex crispus included cysteine (22.6%), glutamate and glutamate acid (20%), and glycine (12%). It was similar the amino acid composition of most PC. The molecular weight of the purified peptide was determined at 568-706 Da by MALDI-TOF MS. Therefore, the Cd-BP of Rumex crispus was PC-Cd-BP consisting of isopeptides.

Comparative Analysis on the Cytotoxicity of Naegleria fowleri and N. gruberi to Macrophages by the Addition of Saccharides

  • Jung, Suk-Yul
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.221-227
    • /
    • 2010
  • To elucidate the invasion mechanism of pathogenic Naegleria fowleri, especially a receptor-ligand recognition, we investigated the in vitro cytotoxicity of pathogenic N. fowleri and nonpathogenic N. gruberi to murine macrophages, RAW 264.7, by adding four kinds of saccharides, ${\alpha}$-fucose, ${\beta}$-galactose, ${\alpha}$-D-mannopyranoside (${\alpha}$-mannose) and xylose. There was not enough of a difference in the cytotoxicity of N. fowleri treated with 10 mM of each saccharide. In particular, the cytotoxicity of N. fowleri was highly inhibited by 100 mM ${\alpha}$-mannose, which was 62.3% inhibition calculated by the analysis of lactate dehydrogenase (LDH) release assay. Although murine macrophages were not significantly destroyed by nonpathogenic N. gruberi under hematoxylin staining, the cytotoxicity of N. gruberi was inhibited from 31.5% to 14.5% (P<0.01) by 100 mM ${\alpha}$-mannose treatment. The binding of N. fowleri to macrophages was inhibited from 33% to 50% by 100 mM ${\alpha}$-mannose. Furthermore, as results of the adhesion assays which were performed to determine whether binding of Naegleria is mediated by saccharides-binding protein, the binding ability of N. fowleri as well as N. gruberi was inhibited by 100 mM ${\alpha}$-mannose.

DNA-Binding and Thermodynamic Parameters, Structure and Cytotoxicity of Newly Designed Platinum(II) and Palladium(II) Anti-Tumor Complexes

  • Mansouri-Torshizi, Hassan;Saeidifar, Maryam;Khosravi, Fatemeh;Divsalar, Adeleh;Saboury, Ali.Akbar;Ghasemi, Zahra Yekke
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.947-955
    • /
    • 2011
  • The complexes [Pd(bpy)(Hex-dtc)]$NO_3$ and [Pt(bpy)(Hex-dtc)]$NO_3$ (bpy is 2,2'-bipyridine and Hex-dtc is hexyldithiocarbamato ligands) were synthesized and characterized by elemental analysis and spectroscopic studies. The cytotoxicity assay of the complexes has been performed on chronic myelogenous leukemia cell line, K562, at micromolar concentration. Both complexes showed cytotoxic activity far better than that of cisplatin under the same experimental conditions. The binding parameters of the complexes with calf thymus DNA (CT-DNA) was investigated using UV-visible and fluorescence techniques. They show the ability of cooperatively intercalating in CT-DNA. Gel filtration studies demonstrated that platinum complex could cleave the DNA. In the interaction studies between the Pd(II) and Pt(II) complexes with CT-DNA, several binding and thermodynamic parameters have been determined, which may provide deeper insights into the mechanism of action of these types of complexes with nucleic acids.

Changes in Adrenal Angiotensin II Receptors in Renin-dependent Hypertensive Rats

  • Lee, Sung-Hou;Lee, Byung-Ho;Shin, Hwa-Sup
    • Archives of Pharmacal Research
    • /
    • 제18권3호
    • /
    • pp.169-172
    • /
    • 1995
  • The changes in blood pressure may relate to the alterations of the responsiveness to vasoconstrictors and vasodilators, and these alterations can arise the modifications in the properties of angiotensin II (AII) receptor. In order to examine the changes of AII receptor in the hypertensive mechanism of renin-dependent hypertensive rats (RHRs; two-kidney, one-ligated type), we compared the equilibrium binding characteristics of $[^3H]$All in adrenal cortex and medulla from RHRs and normotensive rats. The dissociation constants of AII binding in both tissues of RHRs were very similar to those in the respective tissue of normotensive rats. However, the maximum binding was increased from 805 to 1050 fmole/mg protein in the adrenal cortex of RHRs, and decreased from 172 to 126 fmole/mg protein in the adrenal medulla of RHRs. These results imply that the up- and down-regulation of the All receptor population on the cell surface of adrenal glands from RHRs are consorted with the elevation of blood pressure and the activation of renin-angiotensin system.

  • PDF