• Title/Summary/Keyword: Binder process

Search Result 506, Processing Time 0.025 seconds

Binderless Consolidation of Fine Poly-Si Powders for the Application as Photovoltaic Feedstock (태양전지(太陽電池) 원재료(原材料)로 사용(使用)하기 위한 폴리실리콘 미세분말(微細粉末)의 무점결제(無粘結劑) 성형(成形))

  • Shin, Je-Sik;Kim, Dae-Suk;Kim, Ki-Young;Shon, In-Jin;Moon, Byung-Moon
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • In this study, binderless consolidation processes of ultra foe Si powder, by-products of making high purity poly-Si in the current method, were systematically investigated for use as economical solar-grade feedstock. The average diameter of the silicon powder was $7.8{\mu}m$. The main contaminants of the fine silicon powder were $SiO_2$ type oxide and humidity. The chemical pretreatment using the HF solution was observed to be effective for the improvement of the compactability of the silicon powder and the density ratio and the strength of the silicon powder compacts. The yield of the binder-free consolidation process increased by 20% under a vacuum condition. In as-received state, the silicon powder were not pure enough to be used as solar grade feed-stock material. After the dry chemical treatments, a sufficiently high purity above solar-grade was able to be achieved.

A Study for Selecting the Design Number of Gyration of Gyratory Compactor (선회다짐기의 설계 다짐횟수 선정을 위한 연구)

  • Kim, Boo-Il;Lee, Moon-Sup
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.227-236
    • /
    • 2007
  • The design number of gyration is required in the process of asphalt mix design using gyratory compactor. The purpose of this study is to select the design number of gyration for asphalt mix design in the laboratory. Three types of methods were used to select the design number of gyration. The first method is to select the gyration number which gives the same density with the mixtures compacted with 75 blows of Marshall Compaction. The second method is to select the gyration number which gives the same deformation strength with the mixtures compacted with 75 blows of Marshall Compactor. The third method is to select the gyration number which meet the 4% air voids. Ten mixtures, one type of aggregate(granite), one type of asphalt binder(pen. 60-80), and 10 types of gradation, were prepared for the laboratory tests. As a result, 100 number of gyration was selected for the design number of gyration of the asphalt mix design. This result shows a similar trend with the design number of gyration used in the foreign countries. Thus, the design number of gyration selected in this study can be used for the asphalt mix design using the gyratory compactors.

  • PDF

Evaluation of nitrogen oxide removal characteristics using TiO2 (TiO2를 이용한 질소산화물 제거 특성 평가)

  • Park, Jun-Gu;Lim, Hee-Ah;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.668-675
    • /
    • 2019
  • Fine dust in air pollutants is recognized as one of the most serious social environmental problems. Most of the NOx is generated in a combustion process such as that of a coal-fired power plant, and therefore efficient elimination of the NOx from the coal-fired power plants is needed. This study investigates the removal efficiency of using $TiO_2$, a photocatalyst, to remove NOx by Selective Catalytic Reduction (SCR). To evaluate the NOx removal efficiency, $TiO_2$ catalyst and phosphate binder were mixed on the surface of the $Al_2O_3$ substrate with the exothermic agent, and the substrate was heat-treated. The NOx removal efficiency of the catalysts was evaluated according to the temperature, and XRD, SEM, TG-DTA and BET analyzes were performed to investigate the physicochemical properties of the catalysts. NOx removal efficiency was 58.7%~65.9% at 20min, 63.7~66.0% at 30min with temperature change according to time($250^{\circ}C{\sim}500^{\circ}C$). The $TiO_2$ used in the SCR for NOx removal is judged to have the most efficient removal efficiency at $300^{\circ}C$.

Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries (리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성)

  • Shin, Yun Jung;Lee, Won Yeol;Kim, Tae Yun;Moon, Seung-Guen;Jin, En Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.184-192
    • /
    • 2022
  • Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration method without a current collector and a binder. The porous NiO-added S/CNT/NiO electrode exhibited a high initial discharge capacity of 877 mA h g-1 (0.2 C), which was 125 mA h g-1 higher than that of S/CNT, and also showed excellent retention of 84% (S/CNT: 66%). This is the result of suppressing the dissolution of lithium polysulfide into the electrolyte by the strong chemical bond between NiO and lithium polysulfide during the charging and discharging process. In addition, for the flexibility test of the S/CNT/NiO electrode, the 1.6 × 4 cm2 pouch cell was prepared and exhibited stable cycle characteristics of 620 mA h g-1 in both the unfolded and folded state.

Study of Conversion of Waste LFP Battery into Soluble Lithium through Heat Treatment and Mechanochemical Treatment (열처리 및 기계화학적 처리를 통한 폐LFP 배터리로부터 가용성 리튬으로의 전환 연구)

  • Boram Kim;Hee-Seon Kim;Dae-Weon Kim
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.21-29
    • /
    • 2024
  • Globally, the demand for electric vehicles (EVs) is surging due to carbon-neutral strategies aimed at decarbonization. Consequently, the demand for lithium-ion batteries, which are essential components of EVs, is also rising, leading to an increase in the generation of spent batteries. This has prompted research into the recycling of spent batteries to recover valuable metals. In this study, we aimed to selectively leach and recover lithium from the cathode material of spent LFP batteries. To enhance the reaction surface area and reactivity, the binder in the cathode material powder was removed, and the material was subjected to heat treatment in both atmospheric and nitrogen environments across various temperature ranges. This was followed by a mechanochemical process for aqueous leaching. Initially, after heat treatment, the powder was converted into a soluble lithium compound using sodium persulfate (Na2S2O8) in a mechanochemical reaction. Subsequently, aqueous leaching was performed using distilled water. This study confirmed the changes in the characteristics of the cathode material powder due to heat treatment. The final heat treatment in a nitrogen atmosphere resulted in a lithium leaching efficiency of approximately 100% across all temperature ranges.

Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries (화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극)

  • Kim, Hae Been;Lee, Pyung Woo;Lee, Dong Geun;Oh, Ji Seon;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.36-42
    • /
    • 2019
  • A macroporous Sn thick film as a high capacity negative electrode for a lithium ion secondary battery was prepared by using a chemical etching method using nitric acid for a Sn film having a thickness of $52{\mu}m$. The porous Sn thick film greatly reduced the over-voltage for the alloying reaction with lithium by the increased reaction area. At the same time. The porous structure of active Sn film plays a part in the buffer and reduces the damage by the volume change during cycles. Since the porous Sn thick film electrode does not require the use of the binder and the conductive carbon black, it has substantially larger energy density. As the concentration of nitric acid in etching solution increased, the degree of the etching increased. The etching of the Sn film effectively proceeded with nitric acid of 3 M concentration or more. The porous Sn film could not be recovered because the most of Sn was eluted within 60 seconds by the rapid etching rate in the 5 M nitric acid. In the case of etching with 4 M nitric acid for 60 seconds, the appropriate porous Sn film was formed with 48.9% of weight loss and 40.3% of thickness change during chemical acid etching process. As the degree of etching of Sn film increased, the electrochemical activity and the reversible capacity for the lithium storage of the Sn film electrode were increased. The highest reversible specific capacity of 650 mAh/g was achieved at the etching condition with 4 M nitric acid. The porous Sn film electrode showed better cycle performance than the conventional electrode using a Sn powder.