• Title/Summary/Keyword: Binder process

Search Result 500, Processing Time 0.034 seconds

Strength Characteristic according to the Water Curing Temperature of the Inorganic Binder Mixed PVA Fiber (PVA섬유혼입 무기결합재의 수중양생온도에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.194-195
    • /
    • 2013
  • Recently, it is the tendency that the CO2 gas generated in the manufacturing process is increased every year in case of the portland cement used in the most of constructions and civil engineering field. The method that uses the mineral admixtures as the cement substitute material in order to be more serious and as much as it occupies 7% of the global CO2 gas outlet amount such as 1 ton produces the cement and it ejects the CO2 gas of 0.4~1.0 ton, etc conclude this problem is examined. Therefore, PVA fiber was mixed into the inorganic binder recycling the blast furnace slag, which is the industrial byproduct with the purpose studying the Geo polymer which doesn't use the cement at all silica fume, red mud, and etc. In addition, the water curing temperature was differentiated and the strength characteristic of the curing body tried to be examined.

  • PDF

Febrication of $Si_3-N_4$ Bonded SiC Ceramics (질화규소에 의한 SiC 소결체의 제조에 관한 연구)

  • 정주희;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 1983
  • It is know that $Si_3-N_4$ bonded SiC has almost all the valuable properties needed for the high temperature material and thus has bery wide range of applicability. Si powder and two different sized SiC powder were used as the raw mateials. Specimens were prepared by heating the green compact mode of the raw materials with polyvinyl alcohol binder in the nitrogen atmosphere. The bond-ing of SiC particles is brought about with the formation of reaction bonded silicon nitride phase between the particles he influences of the variation of the relative amounts of the raw materials and the amount of the organic binder on the density and the bend strength of the specimens were investigated. It was shown that the calculation of the amount of the nitridation of Si is somewhat complicated matter since some portion of the organic binder reacts with the Si during the firing process. Fixing the Si amount to 20w/o the distributions of the size of the SiC particles that gives the maximum density and the maximum strnegth were obtained through experiments. It was observed that the two distributions were not equal to each other. As the amount of Si increased the amount of Si reacted with nitrogen and the strength increased. The fracture mode was intergranular for the most part and the transgranular fracture was scarcely observed.

  • PDF

Fabrication of Rubber Block by using Recycled Waste Tires (폐타이어 재활용 고무보도블럭의 제조에 관한 연구)

  • 김진국
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.70-75
    • /
    • 1995
  • Waste tires arc used as landifill, combustion and recycling. Rccenllg. lhc recycling of waste tires received a great attentmu fiam all industries. Thc rccgcling methods for w s l e tires are classified inla three culegoljz, a whole tirc, cmmb rubha and energy. T h ~ ssl iidy invesligvled the pruduclion ol Lhc ruhhcr block by using clumh cubbel oI wasle Ires. The process 01 manulacluring the ~uhher block was co~lsislerl ol several slepc: collecting lilts, ctuilnng and grinding hrcs, mixing crumh ruhher wlth bmder. and shaping under heat and pressure The effccl ol binder on ll~e ~uecl~ilnicaplr opcrlics o l r uhher hlock war also investigalcd. The economic feaqihility of a surface treiilmcnl and multilayas on the rubber block was dclcimincd

  • PDF

Effects of Alkali-Activated Soil Stabilizer Binder Based on Recycling BP By-Products on Soil Improvement (BP부산물을 재활용한 알칼리활성화 지반개량재의 지반개량효과에 관한 연구)

  • Lee, Yeong-Won;Kang, Suk-Pyo;Kim, Jae-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.158-165
    • /
    • 2014
  • The enormous quantity of 'Bayer-Process by-products' (BP by-products) discharged by industries producing alumina from bauxite represents an environmental and economical problem. As it is mainly composed of $Fe_2O_3$, $Al_2O_3$, $SiO_2$, CaO and $Na_2O$, it is thought that using BP by-products as a construction material is an effective way to consume such a large quantity of alkaline waste. In this study, This study evaluates the effect of alkali-activated binder based on recycling BP by-products on soil improvement through the evaluation of slope stability and seepage flow numerical analysis. The results of analysis of ground slope safety at dry season and wet season meet standard (Ministry of Land, Infrastructure and Transport, 2006) Especially, when wet season, the ground used soil improving material meet standard, while the ground used soil-nailing method doesn't. Also, permeability coefficient of improved soil is smaller than that of natural soil and saturation depth of reinforced ground surface with improve soil is lower than that of natural soil.

Relationship between Magnetic and Mechanical Properties of Cermet Tools (절삭공구용 서멧의 자기적 특성과 기계적 성질의 관계)

  • Ahn, Dong-Gil;Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.231-237
    • /
    • 2000
  • The commercial cermet cutting tools consist of multi-carbide and a binder metal of iron group, such as cobalt and nickel which are ferromagnetic. In this paper, a new approach to evaluate the mechanical properties of TiCN based cermet by magnetic properties were studied in relation to binder content and sintering conditions. The experimental cermet was prepared using commercial composition with the other binder contents by PM process. It was found that the magnetic properties of the sintered cermets remarkably depended on the microstructure and the total carbon content. The magnetic saturation was proportional to increment of coercive force. At high carbon content in sintered cermet, the magnetic saturation was increased by decreasing the concentration of solutes such as W, Mo, Ti in Co-Ni binder. As the coercive force increases, the hardness usually increases. The strength and toughness of the cermet also increased with increasing the magnetic saturation. The measurement of magnetic properties made it possible to evaluate the mechanical properties in the cermet cutting tools.

  • PDF

Development of Inorganic Binder Using Ash from Sewage Sludge Incinerator I (하수슬러지 소각재를 이용한 무기바인더 개발 I)

  • Lee, Hyun-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.843-850
    • /
    • 2014
  • This study investigated to recycle ash produced in the sewage sludge incinerator using reduction/stabilization. Nonsintering process was performed by binding cement, geobond and sand mixed with sewage sludge ash (SSA). Results showed that unconfined compressive strength could be obtained components of sewage sludge ash. it exceeded more than double score of the 22.54 Mpa ($229.7kg/cm^2$) Korean standard. chemical ingradients of the sewage sludge ash was mainly composed of $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO and others, which were similar to those of the each binders consisting cement and geobond. microstructure of solidified speceimen for the different admixture was related to the compressive strength according to SEM analysis. optimum mixing range of the sewage sludge ash to inorganic binder was found to be 10~40% which can widly safely regulate the confined compressive strength. This study revealed the sewage sludge ash can be partial replacement of the inorganic binder for recycling.

Fabrication Processes and Properties of High Volume Fraction SiC Particulate Preform for Metal Matrix Composites (금속복합재료용 고부피분율 SiC분말 예비성형체의 제조공정과 특성)

  • 전경윤
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.184-191
    • /
    • 1998
  • The fabrication process and properties of SiC particulate preforms with high volume fraction above 50% were investigated. The SiC particulate preforms were fabricated by vacuum-assisted extraction method after wet mixing of SiC particulates of 48 ${\mu}m$ in diameter, $SiO_2$ as inorganic binder, cationic starch as organic binder and polyacrylamide as dispersant in distilled water. The SiC particulate preforms were consolidated by vacuum-assisted extraction, and were followed by drying and calcination. The drying processes were consisted with natural drying at $25^{\circ}C$ for 36 hrs and forced drying at 10$0^{\circ}C$ for 12 hrs in order to prevent the micro-cracking of SiC particulates preform. The compressive strengths of SiC particulate preforms were dependent on the inorganic binder content, calcination temperature and calcination time. The compressive strength of SiC preform increased from 0.47 MPa to 1.79 MPa with increasing the inorganic binder content from 1% to 4% due to the increase of $SiO_2$ flocculant between the interfaces of SiC particulates. The compressive strength of SiC preform increased from 0.90 MPa to 3.21 MPa with increasing the calcination temperatures from 800 to 120$0^{\circ}C$ under identical calcination time of 4hrs. The compressive strength of SiC preform increased from 0.92 to 1.95 MPa with increasing the calcination time from 2 hrs to f hrs at calcination temperature of 110$0^{\circ}C$. The increase of compressive strength of SiC preform with increasing the calcination temperature and time is due to the formation of crystobalite $SiO_2$ phase at the interfaces of SiC particulates.

  • PDF

A study on the Powder Injection Molding of Translucent Alumina via Flowability Simulation of Powder/Binder Mixture (분말사출성형 시 분말 혼합체의 유동성 시뮬레이션을 통한 투광성 알루미나 소결체의 특성 연구)

  • Kim, Hyung Soo;Byun, Jong Min;Kim, Se Hoon;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Translucent alumina is a potential candidate for high temperature application as a replacement of the glass or polymer. Recently, due to the increasing demand of high power light emitting diode (LED), there is a growing interest in the translucent alumina. Since the translucent property is very sensitive to the internal defect, such as voids inside or abnormal grain growth of sintered alumina, it is important to fabricate the defect-free product through the fabrication process. Powder injection molding (PIM) has been commonly applied for the fabrication of complex shaped products. Among the many parameters of PIM, the flowability of powder/binder mixture becomes more significant especially for the shape of the cavity with thin thickness. Two different positions of the gate were applied during PIM using the disc type of die. The binder was removed by solvent extraction method and the brown compact was sintered at $1750^{\circ}C$ for 3 hours in a vacuum. The flowability was also simulated using moldflow (MPI 6.0) with two different types of gate. The effect of the flowability of powder/binder mixture on the microstructure of the sintered specimen was studied with the analysis of the simulation result.

Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts

  • Kim, Kyungho;Lee, Sungmin;Im, Chae-Nam;Kang, Seung-Ho;Cheong, Hae-Won;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.364-369
    • /
    • 2017
  • Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with $300{\mu}m$ thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.