• Title/Summary/Keyword: Binaural Hearing

Search Result 28, Processing Time 0.021 seconds

Ear Canal Insertable Size Wireless Transceiver for Hearing Aid

  • Woo, Sang-Hyo;Mohy-Ud-Din, Zia;Yoon, Young-Ho;Kim, Min-Kyu;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • The aim of this study was to test the feasibility of a wireless transceiver that can be inserted into the ear canal. The wireless technology could minimize the cosmetic problems of patients, and it can be applied to binaural hearing aids for improving speech perception. In order to implement the ear canal insertable transceiver, simple finite-difference time-domain (FDTD) simulations were carried out to determine the feasibility, and the hardware of the transceiver was implemented within the ear shell. The size of the implemented transceiver was only $7{\times}7mm$, and it could successfully transmit signals to external devices. In order to measure the radiation pattern, a simple RF phantom was used, and the maximum attenuation from the phantom was observed to be 23 dB when the reference antenna was placed at a distance of 2 m from the transmitter.

The effect of head movement on HRTF in 3D sound system: Sensitivity analysis on Sphere HRTF (머리움직임이 입체음향 시스템의 머리전달함수에 미치는 영향: 구 머리전달함수의 민감도해석)

  • 김선민;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.353-358
    • /
    • 2002
  • Human's vision is mostly confined to the area in the front and we, humans heavily depend on the sense of hearing to gather information in areas out of our sight. Thus, the virtual reality system consisting of the 3D sound effect gives the user a much better sense of reality than the system without the sound effect. Virtual 3D sound technology has mainly been researched with binaural system. The conventional binaural sound systems reproduce the desired sound at two arbitrary points using two channels in 3-D space. Head movement of listener might be change the nominal acoustic transfer function and deteriorate the performance of 3D sound system based on loudspeakers that needs a crosstalk canceller. In this paper, low kinds of sensitivity functions of sphere HRTF are derived to investigate the effect of head movement on HRTF in 3D sound system. Changes of HRTF caused by rotational and translational motion of head are obtained as we calculate the derivatives of HRTF with respect to angle and distance.

  • PDF

A Study on the Loudness Model in Dichotic Conditions (다이코틱 조건에서의 라우드니스 모델에 관한 연구)

  • 차정호;이정권;신성환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.617-621
    • /
    • 2003
  • Existing loudness models are specified only to diotic sounds in spite of the fact that normal human beings hear dichotic sounds. Approximately, the arithmetic mean of loudness values of both ear signals has been suggested for the resultant perceived loudness. In this study, the dependence of overall loudness perception on the interaural level differences was investigated by the subjective tests. It was found that the larger the interaural level difference, the louder the perception than the mean of calculated loudness values at both ears and the lower the critical band rate or the reference level, the louder the perception than the mean value. A modified loudness model was proposed to he applicable to dichotic sounds by using the equivalent diotic levels.

  • PDF

Development of an Auto ABLB Test Software (자동 ABLB 검사 소프트웨어 개발)

  • Kang, Deok-Hun;Kim, Jin-Dong;Song, Bok-Deuk;Shin, Bum-Joo;Wang, Soo-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5120-5126
    • /
    • 2010
  • ABLB(Alternate Binaural Loudness Balance) test is one of the medical assessments to diagnose detailed lesion of sensory-neural hearing loss based on a recruitment phenomenon. This paper describes an Auto ABLB test software. This software automatically decides test frequency and intensity of first test tone. And it supports an automatic algorithm that analyses the subject's reponses in the current step and then decides intensity of tone provided in next step. Also, this software supports an interface to control and monitor subject's ABLB test. The assessment result is represented by a ladder diagram. The output of this software has been verified using a digital oscilloscope.

Masking Level Difference: Performance of School Children Aged 7-12 Years

  • de Carvalho, Nadia Giulian;do Amaral, Maria Isabel Ramos;de Barros, Vinicius Zuffo;dos Santos, Maria Francisca Colella
    • Journal of Audiology & Otology
    • /
    • v.25 no.2
    • /
    • pp.65-71
    • /
    • 2021
  • Background and Objectives: In masking level difference (MLD), the masked detection threshold for a signal is determined as a function of the relative interaural differences between the signal and the masker. Study 1 analyzed the results of school-aged children with good school performance in the MLD test, and study 2 compared their results with those of a group of children with poor academic performance. Subjects and Methods: Study 1 was conducted with 47 school-aged children with good academic performance (GI) and study 2 was carried out with 32 school-aged children with poor academic performance (GII). The inclusion criteria adopted for both studies were hearing thresholds within normal limits in basic audiological evaluation. Study 1 also considered normal performance in the central auditory processing test battery and absence of auditory complaints and/or of attention, language or speech issues. The MLD test was administered with a pure pulsatile tone of 500 Hz, in a binaural mode and intensity of 50 dBSL, using a CD player and audiometer. Results: In study 1, no significant correlation was observed, considering the influence of the variables age and sex in relation to the results obtained in homophase (SoNo), antiphase (SπNo) and MLD threshold conditions. The final mean MLD threshold was 13.66 dB. In study 2, the variables did not influence the test performance either. There was a significant difference between test results in SπNo conditions of the two groups, while no differences were found both in SoNo conditions and the final result of MLD. Conclusions: In study 1, the cut-off criterion of school-aged children in the MLD test was 9.3 dB. The variables (sex and age) did not interfere with the MLD results. In study 2, school performance did not differ in the MLD results. GII group showed inferior results than GI group, only in SπNo condition.

Masking Level Difference: Performance of School Children Aged 7-12 Years

  • de Carvalho, Nadia Giulian;do Amaral, Maria Isabel Ramos;de Barros, Vinicius Zuffo;dos Santos, Maria Francisca Colella
    • Korean Journal of Audiology
    • /
    • v.25 no.2
    • /
    • pp.65-71
    • /
    • 2021
  • Background and Objectives: In masking level difference (MLD), the masked detection threshold for a signal is determined as a function of the relative interaural differences between the signal and the masker. Study 1 analyzed the results of school-aged children with good school performance in the MLD test, and study 2 compared their results with those of a group of children with poor academic performance. Subjects and Methods: Study 1 was conducted with 47 school-aged children with good academic performance (GI) and study 2 was carried out with 32 school-aged children with poor academic performance (GII). The inclusion criteria adopted for both studies were hearing thresholds within normal limits in basic audiological evaluation. Study 1 also considered normal performance in the central auditory processing test battery and absence of auditory complaints and/or of attention, language or speech issues. The MLD test was administered with a pure pulsatile tone of 500 Hz, in a binaural mode and intensity of 50 dBSL, using a CD player and audiometer. Results: In study 1, no significant correlation was observed, considering the influence of the variables age and sex in relation to the results obtained in homophase (SoNo), antiphase (SπNo) and MLD threshold conditions. The final mean MLD threshold was 13.66 dB. In study 2, the variables did not influence the test performance either. There was a significant difference between test results in SπNo conditions of the two groups, while no differences were found both in SoNo conditions and the final result of MLD. Conclusions: In study 1, the cut-off criterion of school-aged children in the MLD test was 9.3 dB. The variables (sex and age) did not interfere with the MLD results. In study 2, school performance did not differ in the MLD results. GII group showed inferior results than GI group, only in SπNo condition.

Effect of the Inter-aural Level Differences on the Speech Intelligibility Depending on the Room Absorption in Classrooms (실내 흡음에 따른 양이간 음량차가 강의실의 음성명료도에 미치는 영향)

  • Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.335-345
    • /
    • 2013
  • The present study investigates the effect of the inter-aural level difference(ILD) on the syllable articulation test in classrooms which can be occurred by the absorption of interior surfaces. In order to do this, the sound absorbing materials were installed in the classroom and sound pressure level(SPL) at each ear was measured using binaural recording systems. Also, syllable articulation tests were carried out at a classroom with and without sound absorption materials by 20 students who have normal hearing condition, in order to investigates the effect of the ILD on the speech intelligibility. As a result, it was found that the larger inter-aural level differences was occurred at the nearer positions to lateral walls after sound absorptions were applied to lateral walls in the classroom. At some places, the measured ILD was lager than JND of sound level (3dB). Also, it was shown that the correlation coefficient of inter-aural level difference with the score of syllable test has the significant result(-0.441). Thus, It is concluded that ILD can affect the subjective speech intelligibility in classrooms.

Auto ABLB Audiometry System Supporting One-to-many Model (일 대 다 모델을 지원하는 자동 ABLB 청력 검사 시스템)

  • Song, Bok-Deuk;Kang, Deok-Hun;Shin, Bum-Joo;Kim, Jin-Dong;Jeon, Gye-Rok;Wang, Soo-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.519-524
    • /
    • 2011
  • ABLB (alternate binaural loudness balance) test is one of the medical assessments to diagnose detailed lesion of sensory-neural hearing loss based on a recruitment phenomenon. However, current ABLB audiometry takes an operational model, so called face-to-face model, in which model one audiometrist can assess only one subject at a time. As a result, this face-to-face model leads to expensive audiometrist's labor cost and lengthy wait when there exist many subjects. As a solution, this paper suggests an ABLB audiometry system supporting one-to-many model in which model an audiometrist enables to assess several subjects concurrently. By providing such capabilities as real-time transfer of assessment result, video monitoring of subject and video chat, this solution can provide same effect as face-to-face model but overcome weakness of the existing face-to-face model.