• 제목/요약/키워드: Binary learning

검색결과 311건 처리시간 0.024초

개선된 데이터마이닝을 위한 혼합 학습구조의 제시 (Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management)

  • Kim, Steven H.;Shin, Sung-Woo
    • 정보기술응용연구
    • /
    • 제1권
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF

PM10 예측 성능 향상을 위한 이진 분류 모델 비교 분석 (Comparative Analysis of the Binary Classification Model for Improving PM10 Prediction Performance)

  • 정용진;이종성;오창헌
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.56-62
    • /
    • 2021
  • 미세먼지 예보에 대한 높은 정확도가 요구됨에 따라 기계 학습의 알고리즘을 적용하여 예측 정확도를 높이려는 다양한 시도들이 이루어지고 있다. 그러나 미세먼지의 특성과 불균형적인 농도별 발생 비율에 대한 문제로 예측 모델의 학습 및 예측이 잘 이루어지지 않는다. 이러한 문제를 해결하기 위해 특정 농도를 기준으로 미세먼지를 저농도와 고농도로 구분하여 예측을 수행하는 등 다양한 연구가 진행되고 있다. 본 논문에서는 미세먼지 농도의 불균형 특성으로 인한 예측 성능 향상의 문제를 해결하기 위한 미세먼지 농도의 이진 분류 모델을 제안하였다. 분류 알고리즘 중 logistic regression, decision tree, SVM 및 MLP를 이용하여 PM10에 대한 이진분류 모델들을 설계하였다. 오차 행렬을 통해 성능을 비교한 결과, 4가지 모델 중 MLP 모델이 89.98%의 정확도로 가장 높은 이진 분류 성능을 보였다.

이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가 (Feasibility of Deep Learning Algorithms for Binary Classification Problems)

  • 김기태;이보미;김종우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.95-108
    • /
    • 2017
  • 최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.

정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적 (Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization)

  • 장세인;박충식
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.53-65
    • /
    • 2019
  • 영상 기반의 보안 시스템의 증가함에 따라 각 용도마다 다른 다양한 객체들에 대한 처리들이 중요해지고 있다. 객체 추적은 객체 인식, 검출과 같은 작업들과 함께 필수적인 작업으로 다뤄진다. 이 객체 추적을 달성하기 위해서 다양한 머신러닝이 적용될 수 있다. 성공적인 분류기로써 전체 에러율 최소화(total-error-rate minimization) 기반의 방법론이 사용될 수 있다. 이 전체 에러율 최소화 기반의 방법론은 오프라인 학습을 기반으로 하고 있다. 객체 추적은 실시간으로 처리하며 갱신해야하는 것이 필수적이므로 온라인 학습(online learning)을 기반으로 하는 것이 적합하다. 온라인 전체 에러율 최소화 방법론이 개발되었지만 점근적으로 재가중되는(approximately reweighted) 작업이 포함되어 에러를 누적시킬 수 있다는 단점이 있다. 본 논문에서는 정확하게 재가중되는(exactly reweighted) 방법론을 제안하면서 온라인 전체 에러율 최소화가 달성되었다. 이 제안된 온라인 학습 방법론을 객체 추적에 적용하여 총 8개의 데이터베이스에서 다른 추적 방법론들 보다 좋은 성능이 달성되었다.

개념학습을 위한 논리적 진화방식 (Logical Evolution for Concept Learning)

  • 박명수;최진영
    • 전자공학회논문지CI
    • /
    • 제40권3호
    • /
    • pp.144-154
    • /
    • 2003
  • 이 논문에서는, 이진 논리 함수(binary logic function)로 표현되는 개념들에 대한 새로운 학습방법인 논리적 진화방식(Logical Evolution)을 제안하였다. 그리고 이 방법을 통해 기존 귀납학습의 문제점들을 해결하고자 시도하였다. 사용하는 특징이 사전지식의 영향을 적게 받도록, 학습과정에서 얻어진 정보를 이용하여 특징을 생성하고 동시에 이를 이용하여 학습한다. 그리고 전체 자료가 아니라 개별 자료를 이용하여 특징생성 및 학습을 수행한다. 그 결과 새로운 문제가 주어지거나 입출력이 변경되는 경우에도, 이전의 특징을 재사용할 수 있으며 겨우에 따라서는 보다 효율적인 학습이 가능하다. 논리적 진화방식은 5가지 연산으로 구성되며, 이러한 연산들은 특징생성 및 학습 과정에서 논리적 평가방식(logical evaluation)에 의해 적절하게 선택되고 실행된다. 제안된 방법의 성능을 평가하기 위해서 MONK 문제와 새로 정의한 다른 문제를 이용하였다.

비감독형 학습 기법을 사용한 심각도 기반 결함 예측 (Severity-based Fault Prediction using Unsupervised Learning)

  • 홍의석
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.151-157
    • /
    • 2018
  • 소프트웨어 결함 예측에 관한 기존의 연구들은 대부분 모델의 입력 모듈이 결함을 가지고 있는지 여부를 판단하는 이진 감독형 분류 모델들에 관한 것들이었다. 하지만 이진 분류 모델은 결함의 복잡한 특성들을 고려하지 않고 단순히 입력 모듈의 결함 유무만을 판단한다는 문제점이 있고, 감독형 모델은 대부분의 개발 집단이 보유하고 있지 않은 훈련 데이터 집합을 필요로 한다는 한계점이 있다. 본 논문은 이러한 두 가지 문제점을 해결하기 위해 비감독형 알고리즘을 사용한 심각도 기반 삼진 분류 모델을 제안하였으며, 평가 실험 결과 제안 모델이 감독형 모델들에 필적하는 예측 성능을 보였다.

DESIGN OF A BINARY DECISION TREE FOR RECOGNITION OF THE DEFECT PATTERNS OF COLD MILL STRIP USING GENETIC ALGORITHM

  • Lee, Byung-Jin;Kyoung Lyou;Park, Gwi-Tae;Kim, Kyoung-Min
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.208-212
    • /
    • 1998
  • This paper suggests the method to recognize the various defect patterns of cold mill strip using binary decision tree constructed by genetic algorithm automatically. In case of classifying the complex the complex patterns with high similarity like the defect patterns of cold mill strip, the selection of the optimal feature set and the structure of recognizer is important for high recognition rate. In this paper genetic algorithm is used to select a subset of the suitable features at each node in binary decision tree. The feature subset of maximum fitness is chosen and the patterns are classified into two classes by linear decision function. After this process is repeated at each node until all the patterns are classified respectively into individual classes. In this way , binary decision tree classifier is constructed automatically. After construction binary decision tree, the final recognizer is accomplished by the learning process of neural network using a set of standard p tterns at each node. In this paper, binary decision tree classifier is applied to recognition of the defect patterns of cold mill strip and the experimental results are given to show the usefulness of the proposed scheme.

  • PDF

유전 알고리듬을 이용한 이진 트리 분류기의 설계와 냉연 흠 분류에의 적용 (Design of a binary decision tree using genetic algorithm for recognition of the defect patterns of cold mill strip)

  • 김경민;이병진;류경;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.98-103
    • /
    • 2000
  • This paper suggests a method to recognize the various defect patterns of a cold mill strip using a binary decision tree automatically constructed by a genetic algorithm(GA). In classifying complex patterns with high similarity like the defect patterns of a cold mill stirp, the selection of an optimal feature set and an appropriate recognizer is important to achieve high recognition rate. In this paper a GA is used to select a subset of the suitable features at each node in the binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes using a linear decision function. This process is repeated at each node until all the patterns are classified into individual classes. In this way, the classifier using the binary decision tree is constructed automatically. After constructing the binary decision tree, the final recognizer is accomplished by having neural network learning sits of standard patterns at each node. In this paper, the classifier using the binary decision tree is applied to the recognition of defect patterns of a cold mill strip, and the experimental results are given to demonstrate the usefulness of the proposed scheme.

  • PDF

RAM 기반 신경망을 이용한 필기체 숫자 분류 연구 (A Study on Handwritten Digit Categorization of RAM-based Neural Network)

  • 박상무;강만모;엄성훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.201-207
    • /
    • 2012
  • RAM 기반 신경망은 2진 신경망(Binary Neural Network, BNN)에 복수개의 정보 저장 비트를 두어 교육의 반복 횟수를 누적하도록 구성된 가중치를 가지지 않는(weightless) 신경회로망으로서 한 번의 교육만으로 학습이 이루어지는 효율성이 뛰어난 신경회로망이다. 지도 학습에 기반을 둔 RAM 기반 신경망은 패턴 인식 분야에는 우수한 성능을 보이는 반면, 비지도 학습에 의해 패턴을 구분해야 하는 범주화 연구에는 적합하지 않은 모델로 분류된다. 본 논문에서는 비지도 학습 알고리즘을 제안하여 RAM 기반 신경망으로 패턴 범주화를 수행한다. 제안된 비지도 학습 알고리즘에 의해 RAM 기반 신경망은 입력 패턴에 따라 자율 학습하여 스스로 범주를 생성할 수 있으며, 이를 통해 RAM 기반 신경망이 지도 학습과 비지도 학습이 모두 가능한 복합 모델임을 증명한다. 실험에 사용한 학습 패턴으로는 0에서 9까지의 오프라인 필기체 숫자로 구성된 MNIST 데이터베이스를 사용하였다.

Stochastic MAC-layer Interference Model for Opportunistic Spectrum Access: A Weighted Graphical Game Approach

  • Zhao, Qian;Shen, Liang;Ding, Cheng
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.411-419
    • /
    • 2016
  • This article investigates the problem of distributed channel selection in opportunistic spectrum access networks from a perspective of interference minimization. The traditional physical (PHY)-layer interference model is for information theoretic analysis. When practical multiple access mechanisms are considered, the recently developed binary medium access control (MAC)-layer interference model in the previous work is more useful, in which the experienced interference of a user is defined as the number of competing users. However, the binary model is not accurate in mathematics analysis with poor achievable performance. Therefore, we propose a real-valued one called stochastic MAC-layer interference model, where the utility of a player is defined as a function of the aggregate weight of the stochastic interference of competing neighbors. Then, the distributed channel selection problem in the stochastic MAC-layer interference model is formulated as a weighted stochastic MAC-layer interference minimization game and we proved that the game is an exact potential game which exists one pure strategy Nash equilibrium point at least. By using the proposed stochastic learning-automata based uncoupled algorithm with heterogeneous learning parameter (SLA-H), we can achieve suboptimal convergence averagely and this result can be verified in the simulation. Moreover, the simulated results also prove that the proposed stochastic model can achieve higher throughput performance and faster convergence behavior than the binary one.