• 제목/요약/키워드: Binary images

검색결과 572건 처리시간 0.021초

19세기 후반 산형도(山形圖)로 본 왕릉도(王陵圖)의 표현방법(表現方法) -전주이씨(全州李氏) 시조(始祖) 이한(李翰)의 조경단(肇慶檀) 관련 그림을 중심으로- (The Way of Expression of Wangreungdo(王陵圖: A Kind of A Royal Mausoleum Map) Reflected on Sanhyoungdo(山形圖: A Kind of A Mountain Map) in the Late Nineteenth Century - Centering the Drawings Relevant to Jogyoungdan(肇慶壇) of Lee Han, the Founder of Jeonju Lee Family -)

  • 김정문
    • 한국전통조경학회지
    • /
    • 제30권1호
    • /
    • pp.57-65
    • /
    • 2012
  • 본 연구는 대한제국기에 그려진 '완산도형(完山圖形)', '조경단비각재실도형(肇慶壇碑閣齋室圖形), '전주건지산도형(全州乾止山圖形)' 그리고 '조경묘경기전도형(肇慶廟慶基殿圖形)' 등 4매 고지도의 제작의도 및 각 도형의 경관, 조망, 시점, 경물 등의 표현내용 및 방법의 특성을 고찰하고 도형 상호간의 관련성 분석을 통해 지형표현의 특질과 조망구도 그리고 내포된 상징경관의 의미를 고찰할 목적으로 시도되었으며, 문헌조사와 병행, 지도를 통한 관찰조사를 수행하였으며 현장조사 위성사진 인터넷조사를 통해 다음과 같은 결과를 얻었다. 전주가 조선왕실의 본향이라는 역사성을 확보하는데 중심적 공간인 경기전(1410) 조경묘(1771) 조경단(1899)은 왕조의 정통성 부여와 왕권강화의 일환으로 건립 중건되었고 조선왕조 초기부터 대한제국시기까지 정신적 지주 역할을 하면서, 지속적으로 유지 및 관리되었다. 4개 도형은 국호를 대한제국으로 변경한 후 황실과 황제의 위엄성과 당위성을 정당화하기 위해 국가적 차원에서 집중적으로 그려진 조선왕실의 시조 이한(李翰)의 묘소를 알리는 산형도(山形圖)와 그에 부속되는 보조도면으로 파악된다. 즉 완산도형은 전주부에서 조경묘, 경기전, 조경단의 존재를 알리고 그 위치를 파악하기 위한 키맵(key map)이며 건지산도형은 풍수국면도로서 시조묘의 풍수적 정당성을 강조하기 위한 것으로, 조경단비각재실도형은 이를 보다 세밀히 보여주기 위해 상세부분도로서 그려졌다. 전주건지산도형과 조경묘경기전도형은 공히 이원적축적과 부감법을 사용하고 주산을 건지산으로 삼고, 왕자봉과 의묘소(疑墓所)를 중심으로 중요지형을 실제 지형보다 과장해서 표현하였다. 또한 묘지에서 관찰되지 않는 중요 지형은 시점 이동을 통해 관찰하고 이를 세밀하게 표현하였다. 4벌 1조의 지도라는 측면에서 볼 때 '완산도형'은 군현도이며 위치도의 성격을 보이는 반면 '조경묘경기전도형'은 부분상세도로서 배치도로써의 기능을 보인다. 또한 '전주건지산도형'과 '조경단비각재실도형'은 산형도로서의 기능을 갖는 풍수형국도이자 상세도인 것이 확인되었다. 이와 같은 특성으로 볼 때, 기존 고지도와는 달리 연계도면(serial map)으로서의 기능성이 강화된 것으로 보인다.

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF