• Title/Summary/Keyword: Binary classification

Search Result 460, Processing Time 0.03 seconds

Supervised Learning-Based Collaborative Filtering Using Market Basket Data for the Cold-Start Problem

  • Hwang, Wook-Yeon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.421-431
    • /
    • 2014
  • The market basket data in the form of a binary user-item matrix or a binary item-user matrix can be modelled as a binary classification problem. The binary logistic regression approach tackles the binary classification problem, where principal components are predictor variables. If users or items are sparse in the training data, the binary classification problem can be considered as a cold-start problem. The binary logistic regression approach may not function appropriately if the principal components are inefficient for the cold-start problem. Assuming that the market basket data can also be considered as a special regression problem whose response is either 0 or 1, we propose three supervised learning approaches: random forest regression, random forest classification, and elastic net to tackle the cold-start problem, comparing the performance in a variety of experimental settings. The experimental results show that the proposed supervised learning approaches outperform the conventional approaches.

Discriminant Analysis of Binary Data by Using the Maximum Entropy Distribution

  • Lee, Jung Jin;Hwang, Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.909-917
    • /
    • 2003
  • Although many classification models have been used to classify binary data, none of the classification models dominates all varying circumstances depending on the number of variables and the size of data(Asparoukhov and Krzanowski (2001)). This paper proposes a classification model which uses information on marginal distributions of sub-variables and its maximum entropy distribution. Classification experiments by using simulation are discussed.

A GA-based Binary Classification Method for Bankruptcy Prediction (도산예측을 위한 유전 알고리듬 기반 이진분류기법의 개발)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.1-16
    • /
    • 2008
  • The purpose of this paper is to propose a new binary classification method for predicting corporate failure based on genetic algorithm, and to validate its prediction power through empirical analysis. Establishing virtual companies representing bankrupt companies and non-bankrupt ones respectively, the proposed method measures the similarity between the virtual companies and the subject for prediction, and classifies the subject into either bankrupt or non-bankrupt one. The values of the classification variables of the virtual companies and the weights of the variables are determined by the proper model to maximize the hit ratio of training data set using genetic algorithm. In order to test the validity of the proposed method, we compare its prediction accuracy with ones of other existing methods such as multi-discriminant analysis, logistic regression, decision tree, and artificial neural network, and it is shown that the binary classification method we propose in this paper can serve as a premising alternative to the existing methods for bankruptcy prediction.

Eigenvoice Adaptation of Classification Model for Binary Mask Estimation (Eigenvoice를 이용한 이진 마스크 분류 모델 적응 방법)

  • Kim, Gibak
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.164-170
    • /
    • 2015
  • This paper deals with the adaptation of classification model in the binary mask approach to suppress noise in the noisy environment. The binary mask estimation approach is known to improve speech intelligibility of noisy speech. However, the same type of noisy data for the test data should be included in the training data for building the classification model of binary mask estimation. The eigenvoice adaptation is applied to the noise-independent classification model and the adapted model is used as noise-dependent model. The results are reported in Hit rates and False alarm rates. The experimental results confirmed that the accuracy of classification is improved as the number of adaptation sentences increases.

Hierarchical Binary Search Tree (HBST) for Packet Classification (패킷 분류를 위한 계층 이진 검색 트리)

  • Chu, Ha-Neul;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3B
    • /
    • pp.143-152
    • /
    • 2007
  • In order to provide new value-added services such as a policy-based routing and the quality of services in next generation network, the Internet routers need to classify packets into flows for different treatments, and it is called a packet classification. Since the packet classification should be performed in wire-speed for every packet incoming in several hundred giga-bits per second, the packet classification becomes a bottleneck in the Internet routers. Therefore, high speed packet classification algorithms are required. In this paper, we propose an efficient packet classification architecture based on a hierarchical binary search fee. The proposed architecture hierarchically connects the binary search tree which does not have empty nodes, and hence the proposed architecture reduces the memory requirement and improves the search performance.

Binary classification on compositional data

  • Joo, Jae Yun;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.89-97
    • /
    • 2021
  • Due to boundedness and sum constraint, compositional data are often transformed by logratio transformation and their transformed data are put into traditional binary classification or discriminant analysis. However, it may be problematic to directly apply traditional multivariate approaches to the transformed data because class distributions are not Gaussian and Bayes decision boundary are not polynomial on the transformed space. In this study, we propose to use flexible classification approaches to transformed data for compositional data classification. Empirical studies using synthetic and real examples demonstrate that flexible approaches outperform traditional multivariate classification or discriminant analysis.

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

A Study on Gender Classification Based on Diagonal Local Binary Patterns (대각선형 지역적 이진패턴을 이용한 성별 분류 방법에 대한 연구)

  • Choi, Young-Kyu;Lee, Young-Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.39-44
    • /
    • 2009
  • Local Binary Pattern (LBP) is becoming a popular tool for various machine vision applications such as face recognition, classification and background subtraction. In this paper, we propose a new extension of LBP, called the Diagonal LBP (DLBP), to handle the image-based gender classification problem arise in interactive display systems. Instead of comparing neighbor pixels with the center pixel, DLBP generates codes by comparing a neighbor pixel with the diagonal pixel (the neighbor pixel in the opposite side). It can reduce by half the code length of LBP and consequently, can improve the computation complexity. The Support Vector Machine is utilized as the gender classifier, and the texture profile based on DLBP is adopted as the feature vector. Experimental results revealed that our approach based on the diagonal LPB is very efficient and can be utilized in various real-time pattern classification applications.

  • PDF

Weighted Least Squares Based on Feature Transformation using Distance Computation for Binary Classification (이진 분류를 위하여 거리계산을 이용한 특징 변환 기반의 가중된 최소 자승법)

  • Jang, Se-In;Park, Choong-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.219-224
    • /
    • 2020
  • Binary classification has been broadly investigated in machine learning. In addition, binary classification can be easily extended to multi class problems. To successfully utilize machine learning methods for classification tasks, preprocessing and feature extraction steps are essential. These are important steps to improve their classification performances. In this paper, we propose a new learning method based on weighted least squares. In the weighted least squares, designing weights has a significant role. Due to this necessity, we also propose a new technique to obtain weights that can achieve feature transformation. Based on this weighting technique, we also propose a method to combine the learning and feature extraction processes together to perform both processes simultaneously in one step. The proposed method shows the promising performance on five UCI machine learning data sets.